Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Mol Med ; 21(8): 1482-1491, 2017 08.
Article in English | MEDLINE | ID: mdl-28371277

ABSTRACT

This study aimed to investigate the role of miR-138 in human coronary artery endothelial cell (HCAEC) injury and inflammatory response and the involvement of the PI3K/Akt/eNOS signalling pathway. Oxidized low-density lipoprotein (OX-LDL)-induced HCAEC injury models were established and assigned to blank, miR-138 mimic, miR-138 inhibitor, LY294002 (an inhibitor of the PI3K/Akt/eNOS pathway), miR-138 inhibitor + LY294002 and negative control (NC) groups. qRT-PCR and Western blotting were performed to detect the miR-138, PI3K, Akt and eNOS levels and the protein expressions of PI3K, Akt, eNOS, p-Akt, p-eNOS, Bcl-2, Bax and caspase-3. ELISAs were employed to measure the expressions of TNF-α, IL-4, IL-6, IL-8, IL-10 and nitric oxide (NO) and the activities of lactate dehydrogenase (LDH) and eNOS. MTT and flow cytometry were performed to assess the proliferation and apoptosis of HCAECs. Compared to the blank group, PI3K, Akt and eNOS were down-regulated in the miR-138 mimic and LY294002 groups but were up-regulated in the miR-138 inhibitor group. The miR-138 mimic and LY294002 groups showed decreased concentrations of TNF-α, IL-6, IL-8 and NO and reduced activities of LDH and eNOS, while opposite trends were observed in the miR-138 inhibitor group. The concentrations of IL-4 and IL-10 increased in the miR-138 mimic and LY294002 groups but decreased in the miR-138 inhibitor group. The miR-138 mimic and LY294002 groups had significantly decreased cell proliferation and increased cell apoptosis compared to the blank group. These findings indicate that up-regulation of miR-138 alleviates HCAEC injury and inflammatory response by inhibiting the PI3K/Akt/eNOS signalling pathway.


Subject(s)
Endothelial Cells/metabolism , Lipoproteins, LDL/pharmacology , MicroRNAs/genetics , Nitric Oxide Synthase Type III/genetics , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Antagomirs/genetics , Antagomirs/metabolism , Apoptosis/drug effects , Caspase 3/genetics , Caspase 3/metabolism , Cell Line , Cell Proliferation/drug effects , Chromones/pharmacology , Coronary Vessels/cytology , Coronary Vessels/drug effects , Coronary Vessels/metabolism , Endothelial Cells/cytology , Endothelial Cells/drug effects , Gene Expression Regulation , Humans , Interleukins/genetics , Interleukins/metabolism , MicroRNAs/metabolism , Morpholines/pharmacology , Nitric Oxide Synthase Type III/antagonists & inhibitors , Nitric Oxide Synthase Type III/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...