Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Transl Med ; 18(1): 84, 2020 02 17.
Article in English | MEDLINE | ID: mdl-32066482

ABSTRACT

BACKGROUND: Rats with hyperandrogen-induced polycystic ovary syndrome (PCOS) have been shown to develop ovarian oxidative stress (OS) and fibrosis. The Sirt1 agonist, resveratrol, can reduce OS through inhibiting p66Shc in other models of OS. METHODS: We created a rat PCOS model with increased OS levels following treatment with one of the two androgens, dehydroepiandrosterone (DHEA) and dihydrotestosterone (DHT). The PCOS related features were determined by measurement of malondialdehyde (MDA) and superoxide dismutase (SOD) levels or by examining the reactive oxygen species (ROS) levels using the DCF-DA probe. The potential mechanisms by which p66Shc/Sirt1 mediates ovarian fibrosis were explored by western blotting, quantitative reverse transcription-PCR, immunofluorescence staining, and immunohistochemistry. RESULTS: Hyperandrogen dramatically augmented OS and activation of fibrotic factors in the ovary. Our data demonstrated that treatment with resveratrol enhanced Sirt1 and decreased ovarian OS as well as inhibited phosphorylation of p66Shc both in vivo and in vitro. The treatment suppressed fibrotic factor activation and improved ovarian morphology. Lentivirus- or siRNA-mediated p66Shc knockdown resulted in a dramatic enhancement of Sirt1 expression, down-regulation of ROS and suppression of fibrotic factors in granulosa cells. Moreover, p66Shc overexpression markedly increased the expression of fibrotic factors. Additionally, silencing Sirt1 induced a dramatic increase in p66Shc and enhanced activation of fibrotic factors. CONCLUSIONS: p66Shc may be a direct target of Sirt1 for inducing ROS and thus promoting fibrosis. Further exploration of the mechanisms of p66Shc in both fibrosis and OS may provide novel therapeutic strategies that will facilitate the improvement in PCOS symptoms and reproductive functions.


Subject(s)
Hyperandrogenism , Ovary , Animals , Female , Fibrosis , Humans , Hyperandrogenism/pathology , Ovary/metabolism , Oxidative Stress , Rats , Src Homology 2 Domain-Containing, Transforming Protein 1/metabolism
2.
PLoS One ; 14(6): e0218490, 2019.
Article in English | MEDLINE | ID: mdl-31233515

ABSTRACT

Growing evidence indicates that the gut microbiota plays a significant role in the pathophysiological processes of obesity and its related metabolic symptoms in the host. Puerarin, an active ingredient in the root of Pueraria lobate has been suggested to have a potent anti-obesity effect. Herein, we tested whether this effect of puerarin is associated with changes in the gut microbiota. In addition to reducing body weight, inflammation, and insulin resistance, puerarin administration significantly altered the composition of the gut microbiota. Notably, puerarin treatment greatly increased the abundance of Akkermansia muciniphila, a mucin-degrading bacterium known to be beneficial for host metabolism and significantly downregulated in high-fat diet-fed mice. Further experiments revealed that puerarin increased intestinal expression levels of Muc2 and Reg3g and protected intestinal barrier function (normal permeability) by increasing the expression of ZO-1 and occludin in vivo and in vitro. These data suggest that puerarin's enriching effect on A. muciniphila is mediated, at least in part, by a host cellular response to protect the host from diet-induced metabolic disorders and other diseases.


Subject(s)
Diet, High-Fat/adverse effects , Gastrointestinal Microbiome , Gram-Negative Bacterial Infections/microbiology , Obesity/etiology , Verrucomicrobia , Akkermansia , Animals , Biomarkers , Blood Glucose , Cell Line, Tumor , Disease Models, Animal , Gene Expression Regulation , Humans , Male , Mice , Obesity/metabolism , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...