Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 61(23): 8746-8751, 2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35642949

ABSTRACT

A stable 3d-4f heterometallic cluster, namely, {Dy4Ni5L10(NO3)4(CO3)4(CH3OH)2}·CH3CN (Dy4Ni5, HL = 8-hydroxyquinoline), has been solvothermally synthesized and structurally characterized. The compound exhibits an interesting structure in which a tetrahedron based on 4f ions interpenetrates with a square pyramid based on 3d ions. Besides, a unique intermolecular interaction was found in Dy4Ni5, giving rise to its high stability not only when it is in the solid state but also when it dissolves in organic solvents. In addition, the magnetic behavior of solid Dy4Ni5 and the magneto-optical activity of the Dy4Ni5 solution were also studied.

2.
Acta Crystallogr C Struct Chem ; 76(Pt 8): 734-740, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32756035

ABSTRACT

A novel stilbene-based salicylhydrazone compound {systematic name: (E)-4,4'-(ethene-1,2-diyl)bis[(N'E)-N'-(2-hydroxybenzylidene)benzohydrazide] dimethyl sulfoxide disolvate, C30H24N4O4·2C2H6OS or L·2DMSO} was synthesized and characterized by single-crystal X-ray diffraction, powder X-ray diffraction and luminescence spectroscopy. The title compound crystallizes in the monoclinic space group P21/c, with half a symmetry-independent L molecule and one dimethyl sulfoxide (DMSO) solvent molecule in the asymmetric unit. The L molecule adopts an almost planar structure, with a small dihedral angle between the planes of the stilbene and salicylhydrazone groups. There are multiple π-π stacking interactions between adjacent L molecules. The DMSO solvent molecules act as proton donors and acceptors, forming hydrogen bonds of various strengths with the L molecules. In addition, the geometry optimization of a single molecule of L and its luminescence properties either in solution, as a solvated solid or as a desolvated solid were studied. The compound shows an aggregation-induced emission (AIE) effect and exhibits switchable luminescence colouration in the solid state by the simple removal or re-addition of the DMSO solvent.

3.
Dalton Trans ; 46(5): 1413-1419, 2017 Jan 31.
Article in English | MEDLINE | ID: mdl-28045159

ABSTRACT

Four mononuclear Cu(i)-halide complexes containing phosphines and pyridine ligands with strong electron donor substituents, [CuCl(PPh3)2(4-NMe2py)] (1), [CuI(PPh3)2(4-NH2py)] (2), [CuI(POP)(4-NH2py)] (3), and [CuI(POP)(4-NMe2py)]·0.5(Et2O) (4), (PPh3 = triphenylphosphine, 4-NMe2py = 4-(dimethylamino)pyridine, POP = bis[(2-diphenyl-phosphino)phenyl]ether, 4-NH2py = 4-aminopyridine, Et2O = diethyl ether) were synthesized and studied with regard to their structural, photophysical properties and theoretical calculations. The complexes exhibit pure blue thermally activated delayed fluorescence (λmax = 442 (1), 436 (2), 464 (3), and 448 nm (4)) in crystalline at room temperature. Emission lifetime analyses and density functional theory (DFT) calculations show that the blue-light emission at room temperature is the singlet (metal + halide)-to-ligand charge transfer state, (1(M + X)LCT), while that at 77 K is the state of 3(M + X)LCT transition character, owing to the small singlet-triplet energy gaps (ΔE = 660-1680 cm-1). X-ray diffraction structure analysis, photophysical studies and theoretical calculations suggest that the much larger torsion angle between the N-heterocyclic rings and N-Cu-X planes of complex 3 than that of 1, 2 and 4 might causes the bathochromic shift of luminescence, although these complexes containing similar heterocycle ligands.

4.
Angew Chem Int Ed Engl ; 53(47): 12860-4, 2014 Nov 17.
Article in English | MEDLINE | ID: mdl-25251289

ABSTRACT

Circular dichroism is known to be the feature of a chiral agent which has inspired scientist to study the interesting phenomena of circularly polarized light (CPL) modulated molecular chirality. Although several organic molecules or assemblies have been found to be CPL-responsive, the influence of CPL on the assembly of chiral coordination compounds remains unknown. Herein, a chiral coordination polymer, which is constructed from achiral agents, was used to study the CPL-induced enantioselective synthesis. By irradiation with either left-handed or right-handed CPL during the reaction and crystallization, enantiomeric excesses of the crystalline product were obtained. Left-handed CPL resulted in crystals with a left-handed helical structure, and right-handed CPL led to crystals with a right-handed helical structure. It is exciting that the absolute asymmetric synthesis of a chiral coordination polymer could be enantioselective when using CPL, and provides a strategy for the control of the chirality of chiral coordination polymers.


Subject(s)
Lasers , Polymers/chemical synthesis , Circular Dichroism , Polymers/chemistry , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...