Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Glob Chang Biol ; 29(15): 4298-4312, 2023 08.
Article in English | MEDLINE | ID: mdl-37190869

ABSTRACT

The recent rise in atmospheric methane (CH4 ) concentrations accelerates climate change and offsets mitigation efforts. Although wetlands are the largest natural CH4 source, estimates of global wetland CH4 emissions vary widely among approaches taken by bottom-up (BU) process-based biogeochemical models and top-down (TD) atmospheric inversion methods. Here, we integrate in situ measurements, multi-model ensembles, and a machine learning upscaling product into the International Land Model Benchmarking system to examine the relationship between wetland CH4 emission estimates and model performance. We find that using better-performing models identified by observational constraints reduces the spread of wetland CH4 emission estimates by 62% and 39% for BU- and TD-based approaches, respectively. However, global BU and TD CH4 emission estimate discrepancies increased by about 15% (from 31 to 36 TgCH4 year-1 ) when the top 20% models were used, although we consider this result moderately uncertain given the unevenly distributed global observations. Our analyses demonstrate that model performance ranking is subject to benchmark selection due to large inter-site variability, highlighting the importance of expanding coverage of benchmark sites to diverse environmental conditions. We encourage future development of wetland CH4 models to move beyond static benchmarking and focus on evaluating site-specific and ecosystem-specific variabilities inferred from observations.


Subject(s)
Ecosystem , Wetlands , Methane/analysis , Climate Change , Forecasting , Carbon Dioxide
2.
Nat Commun ; 14(1): 3110, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37253779

ABSTRACT

Soil organic carbon (SOC) is a primary regulator of the forest-climate feedback. However, its indicative capability for the soil CH4 sink is poorly understood due to the incomplete knowledge of the underlying mechanisms. Therefore, SOC is not explicitly included in the current model estimation of the global forest CH4 sink. Here, using in-situ observations, global meta-analysis, and process-based modeling, we provide evidence that SOC constitutes an important variable that governs the forest CH4 sink. We find that a CH4 sink is enhanced with increasing SOC content on regional and global scales. The revised model with SOC function better reproduces the field observation and estimates a 39% larger global forest CH4 sink (24.27 Tg CH4 yr-1) than the model without considering SOC effects (17.46 Tg CH4 yr-1). This study highlights the role of SOC in the forest CH4 sink, which shall be factored into future global CH4 budget quantification.

3.
Carbon Balance Manag ; 17(1): 16, 2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36209183

ABSTRACT

BACKGROUND: China's terrestrial ecosystems play a pronounced role in the global carbon cycle. Here we combine spatially-explicit information on vegetation, soil, topography, climate and land use change with a process-based biogeochemistry model to quantify the responses of terrestrial carbon cycle in China during the 20th century. RESULTS: At a century scale, China's terrestrial ecosystems have acted as a carbon sink averaging at 96 Tg C yr- 1, with large inter-annual and decadal variabilities. The regional sink has been enhanced due to the rising temperature and CO2 concentration, with a slight increase trend in carbon sink strength along with the enhanced net primary production in the century. The areas characterized by C source are simulated to extend in the west and north of the Hu Huanyong line, while the eastern and southern regions increase their area and intensity of C sink, particularly in the late 20th century. Forest ecosystems dominate the C sink in China and are responsible for about 64% of the total sink. On the century scale, the increase in carbon sinks in China's terrestrial ecosystems is mainly contributed by rising CO2. Afforestation and reforestation promote an increase in terrestrial carbon uptake in China from 1950s. Although climate change has generally contributed to the increase of carbon sinks in terrestrial ecosystems in China, the positive effect of climate change has been diminishing in the last decades of the 20th century. CONCLUSION: This study focuses on the impacts of climate, CO2 and land use change on the carbon cycle, and presents the potential trends of terrestrial ecosystem carbon balance in China at a century scale. While a slight increase in carbon sink strength benefits from the enhanced vegetation carbon uptake in China's terrestrial ecosystems during the 20th century, the increase trend may diminish or even change to a decrease trend under future climate change.

4.
Sci Rep ; 12(1): 9255, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35661151

ABSTRACT

Quantification of fossil fuel carbon dioxide emissions (CEs) at fine space and time resolution is a critical need in climate change research and carbon cycle. Quantifying changes in spatiotemporal patterns of urban CEs is important to understand carbon cycle and development carbon reduction strategies. The existing spatial data of CEs have low resolution and cannot distinguish the distribution characteristics of CEs of different emission sectors. This study quantified CEs from 15 types of energy sources, including residential, tertiary, and industrial sectors in Shanghai. Additionally, we mapped the CEs for the three sectors using point of interest data and web crawler technology, which is different from traditional methods. At a resolution of 30 m, the improved CEs data has a higher spatial resolution than existing studies. The spatial distribution of CEs based on this study has higher spatial resolution and more details than that based on traditional methods, and can distinguish the spatial distribution characteristics of different sectors. The results indicated that there was a consistent increase in CEs during 2000-2015, with a low rate of increase during 2009-2015. The intensity of CEs increased significantly in the outskirts of the city, mainly due to industrial transfer. Moreover, intensity of CEs reduced in city center. Technological progress has promoted the improvement of energy efficiency, and there has been a decoupling between the economic development and CEs in the city was observed during in 2000-2015.


Subject(s)
Economic Development , Fossil Fuels , Carbon Dioxide/analysis , China , Cities
5.
Glob Chang Biol ; 28(1): 182-200, 2022 01.
Article in English | MEDLINE | ID: mdl-34553464

ABSTRACT

The ongoing development of the Global Carbon Project (GCP) global methane (CH4 ) budget shows a continuation of increasing CH4 emissions and CH4 accumulation in the atmosphere during 2000-2017. Here, we decompose the global budget into 19 regions (18 land and 1 oceanic) and five key source sectors to spatially attribute the observed global trends. A comparison of top-down (TD) (atmospheric and transport model-based) and bottom-up (BU) (inventory- and process model-based) CH4 emission estimates demonstrates robust temporal trends with CH4 emissions increasing in 16 of the 19 regions. Five regions-China, Southeast Asia, USA, South Asia, and Brazil-account for >40% of the global total emissions (their anthropogenic and natural sources together totaling >270 Tg CH4  yr-1 in 2008-2017). Two of these regions, China and South Asia, emit predominantly anthropogenic emissions (>75%) and together emit more than 25% of global anthropogenic emissions. China and the Middle East show the largest increases in total emission rates over the 2000 to 2017 period with regional emissions increasing by >20%. In contrast, Europe and Korea and Japan show a steady decline in CH4 emission rates, with total emissions decreasing by ~10% between 2000 and 2017. Coal mining, waste (predominantly solid waste disposal) and livestock (especially enteric fermentation) are dominant drivers of observed emissions increases while declines appear driven by a combination of waste and fossil emission reductions. As such, together these sectors present the greatest risks of further increasing the atmospheric CH4 burden and the greatest opportunities for greenhouse gas abatement.


Subject(s)
Atmosphere , Methane , Animals , China , Livestock , Methane/analysis , Oceans and Seas
6.
Adv Colloid Interface Sci ; 294: 102465, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34126567

ABSTRACT

The physical behaviors of water in the interface are the fundamental to discovering the engineering properties and environmental effects of aqueous porous media (e.g., soils). The pore water pressure (PWP) is a key parameter to characterize the pore water state (PWS) and its phase transition in the micro interface. Traditionally, the water in the interface is frequently believed to be uniform, negative in pressure and tensile based on macroscopic tests and Gibbs interface model. However, the water in the interface is a non-uniform and compressible fluid (part of tensile and part of compressed), forming a spatial profile of density and PWP depending on its distance from the substrate interface. Herein, we introduced the static and dynamic theory methods of non-uniform water based on diffuse interface model to analyze non-uniform water state dynamics and water density and PWP. Based on the theory of non-uniform water, we gave a clear stress analysis on soil water and developed the concepts of PWS, PWP and matric potential in classical soil mechanics. In addition, the phase transition theory of non-uniform water is also examined. In nature, the generalized Clausius-Clapeyron equation (GCCE) is consistent with Clapeyron equation. Therefore, a unified interpretation is proposed to justify the use of GCCE to represent frozen soil water dynamics. Furthermore, the PWP description of non-uniform water can be well verified by some experiments focusing on property variations in the interface area, including the spatial water density profile and unfrozen water content variations with decreasing temperature and other factors. In turn, PWP spatial distribution of non-uniform water and its states can well explain some key phenomena on phase transition during ice or hydrate formation, including the discrepancies of phase transition under a wide range of conditions.

7.
J Environ Manage ; 289: 112574, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33865022

ABSTRACT

An accurate and efficient extraction of urban extent is important for understanding the dynamics of urban expansion process and for sustainable planning and management of cities. We proposed an improved dynamic nightlight threshold method to model urban extent and to reveal the spatiotemporal dynamics and driving forces of urban expansion. Differing from previous studies, we correct the blooming and over-saturation problems of nighttime light (NTL), and highlight a combination of NTL with urban population data for determining a yearly-continued and city-class-wide threshold for urban mapping. China is selected as a case study area to test the improved method and to gain insights to its urban expansion process. Through the validation, our method has been proven to be more accurate than the traditional NTL threshold method. Accordingly, the yearly-continued NTL data can better describe the changing patterns and driving forces of urban expansion than the yearly-discontinued land use and land cover data do. It is found that the total urban area in China has more than quadrupled from 25.2 in 1992 to 108.2 thousand km2 in 2013. Some significant pulses of urban expansion have been detected in our study, which may be attributed to the policy and socioeconomic impacts. Moreover, the panel regression based on annual NTL data indicates that GDP is a more important driver of urban expansion than urban population.


Subject(s)
Policy , Urbanization , China , Cities , Humans , Urban Population
8.
Sci Rep ; 11(1): 7723, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33833331

ABSTRACT

Wildfires are a major disturbance to forest carbon (C) balance through both immediate combustion emissions and post-fire ecosystem dynamics. Here we used a process-based biogeochemistry model, the Terrestrial Ecosystem Model (TEM), to simulate C budget in Alaska and Canada during 1986-2016, as impacted by fire disturbances. We extracted the data of difference Normalized Burn Ratio (dNBR) for fires from Landsat TM/ETM imagery and estimated the proportion of vegetation and soil C combustion. We observed that the region was a C source of 2.74 Pg C during the 31-year period. The observed C loss, 57.1 Tg C year-1, was attributed to fire emissions, overwhelming the net ecosystem production (1.9 Tg C year-1) in the region. Our simulated direct emissions for Alaska and Canada are within the range of field measurements and other model estimates. As burn severity increased, combustion emission tended to switch from vegetation origin towards soil origin. When dNBR is below 300, fires increase soil temperature and decrease soil moisture and thus, enhance soil respiration. However, the post-fire soil respiration decreases for moderate or high burn severity. The proportion of post-fire soil emission in total emissions increased with burn severity. Net nitrogen mineralization gradually recovered after fire, enhancing net primary production. Net ecosystem production recovered fast under higher burn severities. The impact of fire disturbance on the C balance of northern ecosystems and the associated uncertainties can be better characterized with long-term, prior-, during- and post-disturbance data across the geospatial spectrum. Our findings suggest that the regional source of carbon to the atmosphere will persist if the observed forest wildfire occurrence and severity continues into the future.

9.
Sci Total Environ ; 758: 143644, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33248754

ABSTRACT

Soil organic carbon (SOC) significantly influences soil fertility, soil water holding capacity, and plant productivity. In this study, we applied two boosted regression tree (BRT) models to map SOC stocks across China in the 1980s and the 2010s. The models incorporated nine environmental variables (climate, topography, and biology) and 8897 (in the 1980s) and 4534 (in the 2010s) topsoil (0-20 cm) samples. During the two study periods, 20% of the soil samples were randomly selected for model testing, and the remaining samples were used as a training set to construct the models. The verification results showed that incorporating climate environment variables significantly improved the model prediction in both study periods. Mean annual temperature, mean annual precipitation, elevation, and the normalized difference vegetation index were the dominant environmental factors affecting the spatial distribution of SOC stocks. The full-variable model predicted similar spatial distributions of SOC stocks for the 1980s and the 2010s. SOC stocks in China showed an increasing trend over the past 30 years, from 3.9 kg m-2 in the 1980s to 4.6 kg m-2 in the 2010s. In both periods, topsoil SOC stocks were mainly stored in agroecosystems, forests, and grasslands in the 1980s, with values of 9.5, 12.0, and 11.4 Pg C, respectively. Our study provides reliable information on Chain's carbon distribution, which can be used by land managers and the national government to formulate relevant land use and carbon sequestration policies.

10.
PeerJ ; 8: e9126, 2020.
Article in English | MEDLINE | ID: mdl-32518723

ABSTRACT

Soil organic carbon (SOC) and soil total nitrogen (STN) are major soil indicators for soil quality and fertility. Accurate mapping SOC and STN in soils would help both managed and natural soils and ecosystem management. This study developed an improved similarity-based approach (ISA) to predicting and mapping topsoil (0-20 cm soil depth) SOC and STN in a coastal region of northeastern China. Six environmental variables including elevation, slope gradient, topographic wetness index, the mean annual temperature, the mean annual temperature, and normalized difference vegetation index were used as predictors. Soil survey data in 2012 was designed based on the clustering of the study area into six climatic vegetation landscape units. In each landscape unit, 20-25 sampling points were determined at different landform positions considering local climate, soil type, elevation and other environmental factors, and finally 126 sampling points were obtained. Soil sampling from the depth of 0-20 cm were used for model prediction and validation. The ISA model performance was compared with the geographically weighted regression (GWR), regression kriging (RK), boosted regression trees (BRT) considering mean absolute prediction error (MAE), root mean square error (RMSE), coefficient of determination (R 2), and maximum relative difference (RD) indices. We found that the ISA method performed best with the highest R2 and lowest MAE, RMSE compared to GWR, RK, and BRT methods. The ISA method could explain 76% and 83% of the total SOC and STN variability, respectively, 12-40% higher than other models in the study area. Elevation had the largest influence on SOC and STN distribution. We conclude that the developed ISA model is robust and effective in mapping SOC and STN, particularly in the areas with complex vegetation-landscape when limited samples are available. The method needs to be tested for other regions in our future research.

11.
Sci Total Environ ; 721: 137814, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32197288

ABSTRACT

Dynamic changes in soil organic carbon pools have significant impacts on regional and global carbon balance. Due to rapid development in urbanized areas, the land use changes dramatically, impacting soil organic carbon (SOC) stocks in topsoil. This study aimed to document the impacts of urbanization on SOC stocks in a rapidly urbanized area from northeastern China. A total of 12 auxiliary variables were as SOC predictors including elevation, slope aspect, slope gradient, topographic wetness index, Landsat TM band3, Landsat TM band4, Landsat TM5, and normalized difference vegetation index. Urban-specific variables including population (POP), gross domestic product (GDP), distance to the socio-economic center, and distance to the roads are also considered. A set of 523 (in 1990) and 847 (in 2015) top soil samples with SOC measurement were collected. Two random forest (RF) models, one with all auxiliary variables except urban-specific variable (MA) and the other with all auxiliary variables (MB) were used to map the spatial distribution of SOC stocks in the two periods. Ten-fold cross-validation was conducted to evaluate the performance of RF models. We find that the full auxiliary variables model had a better performance for the both periods. POP and GDP were key auxiliary variables affecting spatial variability of SOC stocks in 2015. Over a 25-year period, SOC stocks decreased from 2.77 ± 1.09 kg m-2 to 2.16 ± 0.93 kg m-2, resulting in 3.78 Tg SOC loss in this region. Rapid urbanization led to drastic land- use change, which was the main reason for the decrease of SOC stocks. Additionally, urban-specific variables should be used as the main auxiliary variables when predicting SOC stocks in the areas that experience rapid urbanization. We believe that accurate prediction and mapping of SOC stocks will help manage land use and facilitate soil quality assessment so as to increase soil carbon sequestration in the region.

12.
Nat Commun ; 10(1): 3024, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31289265

ABSTRACT

Nitrogen (N) availability exerts strong control on carbon storage in the forests of Northern Eurasia. Here, using a process-based model, we explore how three factors that alter N availability-permafrost degradation, atmospheric N deposition, and the abandonment of agricultural land to forest regrowth (land-use legacy)-affect carbon storage in the region's forest vegetation over the 21st century within the context of two IPCC global-change scenarios (RCPs 4.5 and 8.5). For RCP4.5, enhanced N availability results in increased tree carbon storage of 27.8 Pg C, with land-use legacy being the most important factor. For RCP8.5, enhanced N availability results in increased carbon storage in trees of 13.4 Pg C, with permafrost degradation being the most important factor. Our analysis reveals complex spatial and temporal patterns of regional carbon storage. This study underscores the importance of considering carbon-nitrogen interactions when assessing regional and sub-regional impacts of global change policies.

13.
Glob Chang Biol ; 25(7): 2470-2484, 2019 07.
Article in English | MEDLINE | ID: mdl-30929302

ABSTRACT

Evidence suggests that global maize yield declines with a warming climate, particularly with extreme heat events. However, the degree to which important maize processes such as biomass growth rate, growing season length (GSL) and grain formation are impacted by an increase in temperature is uncertain. Such knowledge is necessary to understand yield responses and develop crop adaptation strategies under warmer climate. Here crop models, satellite observations, survey, and field data were integrated to investigate how high temperature stress influences maize yield in the U.S. Midwest. We showed that both observational evidence and crop model ensemble mean (MEM) suggests the nonlinear sensitivity in yield was driven by the intensified sensitivity of harvest index (HI), but MEM underestimated the warming effects through HI and overstated the effects through GSL. Further analysis showed that the intensified sensitivity in HI mainly results from a greater sensitivity of yield to high temperature stress during the grain filling period, which explained more than half of the yield reduction. When warming effects were decomposed into direct heat stress and indirect water stress (WS), observational data suggest that yield is more reduced by direct heat stress (-4.6 ± 1.0%/°C) than by WS (-1.7 ± 0.65%/°C), whereas MEM gives opposite results. This discrepancy implies that yield reduction by heat stress is underestimated, whereas the yield benefit of increasing atmospheric CO2 might be overestimated in crop models, because elevated CO2 brings yield benefit through water conservation effect but produces limited benefit over heat stress. Our analysis through integrating data and crop models suggests that future adaptation strategies should be targeted at the heat stress during grain formation and changes in agricultural management need to be better accounted for to adequately estimate the effects of heat stress.


Subject(s)
Hot Temperature , Zea mays , Agriculture , Edible Grain , Temperature
14.
Proc Natl Acad Sci U S A ; 115(49): 12407-12412, 2018 12 04.
Article in English | MEDLINE | ID: mdl-30455319

ABSTRACT

Amazonian peatlands store a large amount of soil organic carbon (SOC), and its fate under a future changing climate is unknown. Here, we use a process-based peatland biogeochemistry model to quantify the carbon accumulation for peatland and nonpeatland ecosystems in the Pastaza-Marañon foreland basin (PMFB) in the Peruvian Amazon from 12,000 y before present to AD 2100. Model simulations indicate that warming accelerates peat SOC loss, while increasing precipitation accelerates peat SOC accumulation at millennial time scales. The uncertain parameters and spatial variation of climate are significant sources of uncertainty to modeled peat carbon accumulation. Under warmer and presumably wetter conditions over the 21st century, SOC accumulation rate in the PMFB slows down to 7.9 (4.3-12.2) g⋅C⋅m-2⋅y-1 from the current rate of 16.1 (9.1-23.7) g⋅C⋅m-2⋅y-1, and the region may turn into a carbon source to the atmosphere at -53.3 (-66.8 to -41.2) g⋅C⋅m-2⋅y-1 (negative indicates source), depending on the level of warming. Peatland ecosystems show a higher vulnerability than nonpeatland ecosystems, as indicated by the ratio of their soil carbon density changes (ranging from 3.9 to 5.8). This is primarily due to larger peatlands carbon stocks and more dramatic responses of their aerobic and anaerobic decompositions in comparison with nonpeatland ecosystems under future climate conditions. Peatland and nonpeatland soils in the PMFB may lose up to 0.4 (0.32-0.52) Pg⋅C by AD 2100 with the largest loss from palm swamp. The carbon-dense Amazonian peatland may switch from a current carbon sink into a source in the 21st century.

15.
Glob Chang Biol ; 24(11): 5188-5204, 2018 11.
Article in English | MEDLINE | ID: mdl-30101501

ABSTRACT

Across the Arctic, the net ecosystem carbon (C) balance of tundra ecosystems is highly uncertain due to substantial temporal variability of C fluxes and to landscape heterogeneity. We modeled both carbon dioxide (CO2 ) and methane (CH4 ) fluxes for the dominant land cover types in a ~100-km2 sub-Arctic tundra region in northeast European Russia for the period of 2006-2015 using process-based biogeochemical models. Modeled net annual CO2 fluxes ranged from -300 g C m-2  year-1 [net uptake] in a willow fen to 3 g C m-2  year-1 [net source] in dry lichen tundra. Modeled annual CH4 emissions ranged from -0.2 to 22.3 g C m-2  year-1 at a peat plateau site and a willow fen site, respectively. Interannual variability over the decade was relatively small (20%-25%) in comparison with variability among the land cover types (150%). Using high-resolution land cover classification, the region was a net sink of atmospheric CO2 across most land cover types but a net source of CH4 to the atmosphere due to high emissions from permafrost-free fens. Using a lower resolution for land cover classification resulted in a 20%-65% underestimation of regional CH4 flux relative to high-resolution classification and smaller (10%) overestimation of regional CO2 uptake due to the underestimation of wetland area by 60%. The relative fraction of uplands versus wetlands was key to determining the net regional C balance at this and other Arctic tundra sites because wetlands were hot spots for C cycling in Arctic tundra ecosystems.


Subject(s)
Carbon Cycle , Tundra , Arctic Regions , Carbon , Carbon Dioxide/analysis , Ecosystem , Methane/analysis , Russia , Soil , Wetlands
16.
Ecol Appl ; 28(6): 1396-1412, 2018 09.
Article in English | MEDLINE | ID: mdl-29923353

ABSTRACT

We summarize the results of a recent interagency assessment of land carbon dynamics in Alaska, in which carbon dynamics were estimated for all major terrestrial and aquatic ecosystems for the historical period (1950-2009) and a projection period (2010-2099). Between 1950 and 2009, upland and wetland (i.e., terrestrial) ecosystems of the state gained 0.4 Tg C/yr (0.1% of net primary production, NPP), resulting in a cumulative greenhouse gas radiative forcing of 1.68 × 10-3  W/m2 . The change in carbon storage is spatially variable with the region of the Northwest Boreal Landscape Conservation Cooperative (LCC) losing carbon because of fire disturbance. The combined carbon transport via various pathways through inland aquatic ecosystems of Alaska was estimated to be 41.3 Tg C/yr (17% of terrestrial NPP). During the projection period (2010-2099), carbon storage of terrestrial ecosystems of Alaska was projected to increase (22.5-70.0 Tg C/yr), primarily because of NPP increases of 10-30% associated with responses to rising atmospheric CO2 , increased nitrogen cycling, and longer growing seasons. Although carbon emissions to the atmosphere from wildfire and wetland CH4 were projected to increase for all of the climate projections, the increases in NPP more than compensated for those losses at the statewide level. Carbon dynamics of terrestrial ecosystems continue to warm the climate for four of the six future projections and cool the climate for only one of the projections. The attribution analyses we conducted indicated that the response of NPP in terrestrial ecosystems to rising atmospheric CO2 (~5% per 100 ppmv CO2 ) saturates as CO2 increases (between approximately +150 and +450 ppmv among projections). This response, along with the expectation that permafrost thaw would be much greater and release large quantities of permafrost carbon after 2100, suggests that projected carbon gains in terrestrial ecosystems of Alaska may not be sustained. From a national perspective, inclusion of all of Alaska in greenhouse gas inventory reports would ensure better accounting of the overall greenhouse gas balance of the nation and provide a foundation for considering mitigation activities in areas that are accessible enough to support substantive deployment.


Subject(s)
Carbon Cycle , Climate Change , Ecosystem , Alaska , Environmental Policy , Forecasting
17.
Glob Chang Biol ; 24(10): 4718-4730, 2018 10.
Article in English | MEDLINE | ID: mdl-29901245

ABSTRACT

A better understanding of recent crop yield trends is necessary for improving the yield and maintaining food security. Several possible mechanisms have been investigated recently in order to explain the steady growth in maize yield over the US Corn-Belt, but a substantial fraction of the increasing trend remains elusive. In this study, trends in grain filling period (GFP) were identified and their relations with maize yield increase were further analyzed. Using satellite data from 2000 to 2015, an average lengthening of GFP of 0.37 days per year was found over the region, which probably results from variety renewal. Statistical analysis suggests that longer GFP accounted for roughly one-quarter (23%) of the yield increase trend by promoting kernel dry matter accumulation, yet had less yield benefit in hotter counties. Both official survey data and crop model simulations estimated a similar contribution of GFP trend to yield. If growing degree days that determines the GFP continues to prolong at the current rate for the next 50 years, yield reduction will be lessened with 25% and 18% longer GFP under Representative Concentration Pathway 2.6 (RCP 2.6) and RCP 6.0, respectively. However, this level of progress is insufficient to offset yield losses in future climates, because drought and heat stress during the GFP will become more prevalent and severe. This study highlights the need to devise multiple effective adaptation strategies to withstand the upcoming challenges in food security.


Subject(s)
Agriculture , Edible Grain/growth & development , Zea mays/growth & development , Climate Change , Droughts , Food Supply , Forecasting , Hot Temperature
18.
Ecol Appl ; 28(6): 1377-1395, 2018 09.
Article in English | MEDLINE | ID: mdl-29808543

ABSTRACT

Wetlands are critical terrestrial ecosystems in Alaska, covering ~177,000 km2 , an area greater than all the wetlands in the remainder of the United States. To assess the relative influence of changing climate, atmospheric carbon dioxide (CO2 ) concentration, and fire regime on carbon balance in wetland ecosystems of Alaska, a modeling framework that incorporates a fire disturbance model and two biogeochemical models was used. Spatially explicit simulations were conducted at 1-km resolution for the historical period (1950-2009) and future projection period (2010-2099). Simulations estimated that wetland ecosystems of Alaska lost 175 Tg carbon (C) in the historical period. Ecosystem C storage in 2009 was 5,556 Tg, with 89% of the C stored in soils. The estimated loss of C as CO2 and biogenic methane (CH4 ) emissions resulted in wetlands of Alaska increasing the greenhouse gas forcing of climate warming. Simulations for the projection period were conducted for six climate change scenarios constructed from two climate models forced under three CO2 emission scenarios. Ecosystem C storage averaged among climate scenarios increased 3.94 Tg C/yr by 2099, with variability among the simulations ranging from 2.02 to 4.42 Tg C/yr. These increases were driven primarily by increases in net primary production (NPP) that were greater than losses from increased decomposition and fire. The NPP increase was driven by CO2 fertilization (~5% per 100 parts per million by volume increase) and by increases in air temperature (~1% per °C increase). Increases in air temperature were estimated to be the primary cause for a projected 47.7% mean increase in biogenic CH4 emissions among the simulations (~15% per °C increase). Ecosystem CO2 sequestration offset the increase in CH4 emissions during the 21st century to decrease the greenhouse gas forcing of climate warming. However, beyond 2100, we expect that this forcing will ultimately increase as wetland ecosystems transition from being a sink to a source of atmospheric CO2 because of (1) decreasing sensitivity of NPP to increasing atmospheric CO2 , (2) increasing availability of soil C for decomposition as permafrost thaws, and (3) continued positive sensitivity of biogenic CH4 emissions to increases in soil temperature.


Subject(s)
Carbon Cycle , Global Warming , Models, Theoretical , Wetlands , Alaska , Carbon Dioxide , Forecasting , Methane , Wildfires
19.
Proc Natl Acad Sci U S A ; 115(15): 3882-3887, 2018 04 10.
Article in English | MEDLINE | ID: mdl-29581283

ABSTRACT

We conducted a model-based assessment of changes in permafrost area and carbon storage for simulations driven by RCP4.5 and RCP8.5 projections between 2010 and 2299 for the northern permafrost region. All models simulating carbon represented soil with depth, a critical structural feature needed to represent the permafrost carbon-climate feedback, but that is not a universal feature of all climate models. Between 2010 and 2299, simulations indicated losses of permafrost between 3 and 5 million km2 for the RCP4.5 climate and between 6 and 16 million km2 for the RCP8.5 climate. For the RCP4.5 projection, cumulative change in soil carbon varied between 66-Pg C (1015-g carbon) loss to 70-Pg C gain. For the RCP8.5 projection, losses in soil carbon varied between 74 and 652 Pg C (mean loss, 341 Pg C). For the RCP4.5 projection, gains in vegetation carbon were largely responsible for the overall projected net gains in ecosystem carbon by 2299 (8- to 244-Pg C gains). In contrast, for the RCP8.5 projection, gains in vegetation carbon were not great enough to compensate for the losses of carbon projected by four of the five models; changes in ecosystem carbon ranged from a 641-Pg C loss to a 167-Pg C gain (mean, 208-Pg C loss). The models indicate that substantial net losses of ecosystem carbon would not occur until after 2100. This assessment suggests that effective mitigation efforts during the remainder of this century could attenuate the negative consequences of the permafrost carbon-climate feedback.

20.
Ecol Appl ; 28(1): 5-27, 2018 01.
Article in English | MEDLINE | ID: mdl-29044791

ABSTRACT

It is important to understand how upland ecosystems of Alaska, which are estimated to occupy 84% of the state (i.e., 1,237,774 km2 ), are influencing and will influence state-wide carbon (C) dynamics in the face of ongoing climate change. We coupled fire disturbance and biogeochemical models to assess the relative effects of changing atmospheric carbon dioxide (CO2 ), climate, logging and fire regimes on the historical and future C balance of upland ecosystems for the four main Landscape Conservation Cooperatives (LCCs) of Alaska. At the end of the historical period (1950-2009) of our analysis, we estimate that upland ecosystems of Alaska store ~50 Pg C (with ~90% of the C in soils), and gained 3.26 Tg C/yr. Three of the LCCs had gains in total ecosystem C storage, while the Northwest Boreal LCC lost C (-6.01 Tg C/yr) because of increases in fire activity. Carbon exports from logging affected only the North Pacific LCC and represented less than 1% of the state's net primary production (NPP). The analysis for the future time period (2010-2099) consisted of six simulations driven by climate outputs from two climate models for three emission scenarios. Across the climate scenarios, total ecosystem C storage increased between 19.5 and 66.3 Tg C/yr, which represents 3.4% to 11.7% increase in Alaska upland's storage. We conducted additional simulations to attribute these responses to environmental changes. This analysis showed that atmospheric CO2 fertilization was the main driver of ecosystem C balance. By comparing future simulations with constant and with increasing atmospheric CO2 , we estimated that the sensitivity of NPP was 4.8% per 100 ppmv, but NPP becomes less sensitive to CO2 increase throughout the 21st century. Overall, our analyses suggest that the decreasing CO2 sensitivity of NPP and the increasing sensitivity of heterotrophic respiration to air temperature, in addition to the increase in C loss from wildfires weakens the C sink from upland ecosystems of Alaska and will ultimately lead to a source of CO2 to the atmosphere beyond 2100. Therefore, we conclude that the increasing regional C sink we estimate for the 21st century will most likely be transitional.


Subject(s)
Carbon Cycle , Climate Change , Ecosystem , Alaska , Fires , Models, Biological , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...