Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Exp Ther Med ; 26(5): 516, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37854499

ABSTRACT

Globally, liver cancer ranks among the most lethal cancers, with chemotherapy being one of its primary treatments. However, poor selectivity, systemic toxicity, a narrow treatment window, low response rate and multidrug resistance limit its clinical application. Liver-targeted nanoparticles (NPs) exhibit excellent targeted delivery ability and promising effectivity in treating liver cancer. The present study aimed to investigate the liver-targeting and anti-liver cancer effect of artesunate (ART)-loaded and glycyrrhetinic acid (GA)-decorated polyethylene glycol (PEG)-poly (lactic-co-glycolic acid) (PLGA) (ART/GA-PEG-PLGA) NPs. GA-coated NPs significantly increased hepatoma-targeted cellular uptake, with micropinocytosis and caveolae-mediated endocytosis as its chief internalization pathways. Moreover, ART/GA-PEG-PLGA NPs exhibited pro-apoptotic effects on HepG2 cells, mainly via the induction of a high level of reactive oxygen species, decline in mitochondrial membrane potential and induction of cell cycle arrest. Additionally, ART/GA-PEG-PLGA NPs induced internal apoptosis pathways by upregulating the activity of cleaved caspase-3/7 and expression of cleaved poly (ADP-Ribose)-polymerase and Phos-p38 mitogen-activated protein kinase in HepG2 cells. Furthermore, ART/GA-PEG-PLGA NPs exhibited higher liver accumulation and longer mean retention time, resulting in increased bioavailability. Finally, ART/GA-PEG-PLGA NPs promoted the liver-targeting distribution of ART, increased the retention time and promoted its antitumour effects in vivo. Therefore, ART/GA-PEG-PLGA NPs afforded excellent hepatoma-targeted delivery and anti-liver cancer efficacy, and thus, they may be a promising strategy for treating liver cancer.

2.
Drug Des Devel Ther ; 17: 2063-2076, 2023.
Article in English | MEDLINE | ID: mdl-37457888

ABSTRACT

Objective: Silibinin, a natural product extracted from the seeds of the Silybum marianum, is versatile with various pharmacological effects. However, its clinical application was strongly hampered by its low bioavailability and poor water solubility. Herein, a series of glycosylated silibinin derivatives were identified as novel anti-tumor agents. Materials and Methods: The cell viability was evaluated by CCK8 assay. Furthermore, cell apoptosis and cell cycle progression were tested by flow cytometry. In addition, the pharmacokinetic assessment of compound 15 and silibinin through intravenous administration (i.v., 2 mg/kg) to ICR mice were performed. Results: The synthesized compounds showed better water solubilities than silibinin. Among them, compound 15 exhibited inhibitory activity against DU145 cells with IC50 value of 1.37 ± 0.140 µM. Moreover, it arrested cell cycle at G2/M phase and induced apoptosis in DU145 cells. Additionally, compound 15 also displayed longer half-life (T1/2 = 128.3 min) in liver microsomes than that of silibinin (T1/2 = 82.5 min) and appropriate pharmacokinetic parameters in mice. Conclusion: Overall, glycosylation of silibinin would be a valid strategy for the development of silibinin derivatives as anti-tumor agents.


Subject(s)
Antineoplastic Agents , Silymarin , Mice , Animals , Silybin/pharmacology , Silymarin/pharmacology , Glycosylation , Mice, Inbred ICR , Antineoplastic Agents/pharmacology , Apoptosis , Water , Cell Line, Tumor
3.
Arch Pharm (Weinheim) ; 352(8): e1900024, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31338897

ABSTRACT

A series of novel 3-(thiophen-2-ylthio)pyridine derivatives as insulin-like growth factor 1 receptor (IGF-1R) inhibitors was designed and synthesized. IGF-1R kinase inhibitory activities and cytotoxicities against HepG2 and WSU-DLCL2 cell lines were tested. For all of these compounds, potent cancer cell proliferation inhibitory activities were observed, but not through the inhibition of IGR-1R. Selected compounds were further screened against various kinases. Typical compound 22 (50% inhibitory concentration [IC50 ] values, HepG2: 2.98 ± 1.11 µM and WSU-DLCL2: 4.34 ± 0.84 µM) exhibited good inhibitory activities against fibroblast growth factor receptor-2 (FGFR2), FGFR3, epidermal growth factor receptor, Janus kinase, and RON (receptor originated from Nantes), with IC50 values ranging from 2.14 to 12.20 µM. Additionally, the cell-cycle analysis showed that compound 22 could arrest HepG2 cells in the G1/G0 phase. Taken together, all the experiments confirmed that the compounds in this series were multitarget anticancer agents worth further optimizing.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Hep G2 Cells , Humans , Janus Kinases/antagonists & inhibitors , Janus Kinases/metabolism , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyridines/chemical synthesis , Pyridines/chemistry , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/metabolism , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Receptor, IGF Type 1/antagonists & inhibitors , Receptor, IGF Type 1/metabolism , Structure-Activity Relationship
5.
Article in Chinese | MEDLINE | ID: mdl-23547461

ABSTRACT

OBJECTIVE: To study the effects of acetylcysteine magnesium on the vasoactive substances and hepatic fibrosis indexes in liver cirrhosis and portal hypertension of rats. METHODS: The rat liver cirrhosis model was made with 12 microg/kg dimethylnitrosamines. Then acetylcysteine magnesium was injected respectively with 25, 50, and 100 mg x kg(-1) dose daily into abdominal cavity. After 8 weeks treatment, pathological section, TGF-beta1, NO, TNOS and iNOS of hepatic tissue were detected to assess the effect of acetylcysteine magnesium against cirrhosis portal hypertension. RESULTS: After the DMNA modeling was completed, the HE and Sweet reticulocyte staining of liver pathological section showed that cirrhosis of the liver was in the III-IV phase, the infiltration of lymphocytes and formation of pseudolobuli in liver were alleviated in three acetylcysteine magnesium treatment groups (low, medium, and high dose), and the degree of liver fiber sclerosis in three groups was significantly lower than control group. Compared with control group, TGF-beta1, NO, TNOS and iNOS were significantly reduced in all treatment groups (P < 0.05). CONCLUSION: Acetylcysteine magnesium is probably a distinctive antioxidant which can remove various free radical in body and modulate ligand-dependent signal transduction and the growth of cell. It also have protection in the liver cirrhosis and portal hypertension of rats induced by dimethylnitrosamine.


Subject(s)
Acetylcysteine/therapeutic use , Hypertension, Portal/prevention & control , Liver Cirrhosis, Experimental/prevention & control , Animals , Hypertension, Portal/metabolism , Hypertension, Portal/pathology , Liver Cirrhosis, Experimental/metabolism , Liver Cirrhosis, Experimental/pathology , Male , Nitric Oxide/physiology , Rats , Rats, Sprague-Dawley , Transforming Growth Factor beta1/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...