Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 173
Filter
1.
J Neuroinflammation ; 21(1): 143, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822367

ABSTRACT

The dysregulation of pro- and anti-inflammatory processes in the brain has been linked to the pathogenesis of major depressive disorder (MDD), although the precise mechanisms remain unclear. In this study, we discovered that microglial conditional knockout of Pdcd4 conferred protection against LPS-induced hyperactivation of microglia and depressive-like behavior in mice. Mechanically, microglial Pdcd4 plays a role in promoting neuroinflammatory responses triggered by LPS by inhibiting Daxx-mediated PPARγ nucleus translocation, leading to the suppression of anti-inflammatory cytokine IL-10 expression. Finally, the antidepressant effect of microglial Pdcd4 knockout under LPS-challenged conditions was abolished by intracerebroventricular injection of the IL-10 neutralizing antibody IL-10Rα. Our study elucidates the distinct involvement of microglial Pdcd4 in neuroinflammation, suggesting its potential as a therapeutic target for neuroinflammation-related depression.


Subject(s)
Co-Repressor Proteins , Interleukin-10 , Mice, Knockout , Microglia , Neuroinflammatory Diseases , PPAR gamma , Signal Transduction , Animals , Male , Mice , Adaptor Proteins, Signal Transducing/deficiency , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/deficiency , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Depression/metabolism , Depression/etiology , Interleukin-10/metabolism , Interleukin-10/deficiency , Interleukin-10/genetics , Lipopolysaccharides/toxicity , Mice, Inbred C57BL , Microglia/metabolism , Microglia/drug effects , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Neuroinflammatory Diseases/metabolism , PPAR gamma/metabolism , PPAR gamma/genetics , Signal Transduction/physiology , Signal Transduction/drug effects
2.
Curr Med Imaging ; 20(1): e15734056267653, 2024.
Article in English | MEDLINE | ID: mdl-38874039

ABSTRACT

BACKGROUND: Magnetic resonance enteroclysis (MRE) has been widely applied to diagnose Crohn's disease (CD). Magnetic resonance (MR) at 3.0 T improves signal-to-noise ratio (SNR), shortens image acquisition time, and shows more advantages. OBJECTIVE: This study aimed to retrospectively analyze the diagnostic value of 3.0 T MR imaging for active CD. METHODS: 48 CD patients hospitalized in our hospital from January 2021 to December 2022 were selected as the study subjects. These 48 CD patients underwent both double-balloon enteroscopy and 3.0 T MRE. All patients' arterial phase signal, venous phase signal, bowel wall, and bowel lumen of MRE were observed to identify whether they suffered from active CD. Based on the results of enteroscopy, the number of true positives, true negatives, false negatives, and false positives diagnosed by MRE were screened; next, the diagnostic accuracy, sensitivity, and specificity of MRE in assessing active CD were calculated. RESULTS: Of the 48 patients, 39 were diagnosed with small bowel CD by MRE, which was not significantly different from the results of enteroscopy (P>0.05). According to MRE diagnostic results, the arterial phase predominantly presented high signal intensity, and the venous phase mainly presented low signal intensity or isointensity. Small bowel CD lesions were primarily characterized by bowel wall thickening, rare pneumatosis enhancement of the bowel wall, bowel lumen pneumatosis or dilatation, and rare strictures. Besides, MRE presented an accuracy of 93.75%, sensitivity of 97.37%, and specificity of 80.00% in diagnosing CD. CONCLUSION: 3.0 T MR imaging has diagnostic value for active CD and shows certain clinical application value.

.


Subject(s)
Crohn Disease , Magnetic Resonance Imaging , Sensitivity and Specificity , Humans , Crohn Disease/diagnostic imaging , Magnetic Resonance Imaging/methods , Male , Female , Adult , Retrospective Studies , Middle Aged , Young Adult , Signal-To-Noise Ratio , Adolescent , Double-Balloon Enteroscopy/methods , Intestine, Small/diagnostic imaging
3.
Int J Med Sci ; 21(6): 1176-1186, 2024.
Article in English | MEDLINE | ID: mdl-38774752

ABSTRACT

Background: To uncover the potential significance of JAK-STAT-SOCS1 axis in penile cancer, our study was the pioneer in exploring the altered expression processes of JAK-STAT-SOCS1 axis in tumorigenesis, malignant progression and lymphatic metastasis of penile cancer. Methods: In current study, the comprehensive analysis of JAK-STAT-SOCS1 axis in penile cancer was analyzed via multiple analysis approaches based on GSE196978 data, single-cell data (6 cancer samples) and bulk RNA data (7 cancer samples and 7 metastasis lymph nodes). Results: Our study observed an altered molecular expression of JAK-STAT-SOCS1 axis during three different stages of penile cancer, from tumorigenesis to malignant progression to lymphatic metastasis. STAT4 was an important dominant molecule in penile cancer, which mediated the immunosuppressive tumor microenvironment by driving the apoptosis of cytotoxic T cell and was also a valuable biomarker of immune checkpoint inhibitor treatment response. Conclusions: Our findings revealed that the complexity of JAK-STAT-SOCS1 axis and the predominant role of STAT4 in penile cancer, which can mediate tumorigenesis, malignant progression, and lymphatic metastasis. This insight provided valuable information for developing precise treatment strategies for patients with penile cancer.


Subject(s)
Disease Progression , Janus Kinases , Lymphatic Metastasis , Penile Neoplasms , STAT4 Transcription Factor , Suppressor of Cytokine Signaling 1 Protein , Humans , Male , Penile Neoplasms/pathology , Penile Neoplasms/genetics , Penile Neoplasms/metabolism , Suppressor of Cytokine Signaling 1 Protein/genetics , Suppressor of Cytokine Signaling 1 Protein/metabolism , Lymphatic Metastasis/pathology , Lymphatic Metastasis/genetics , Janus Kinases/metabolism , STAT4 Transcription Factor/metabolism , STAT4 Transcription Factor/genetics , Gene Expression Regulation, Neoplastic , Carcinogenesis/genetics , Carcinogenesis/pathology , Signal Transduction , Tumor Microenvironment/immunology , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology
4.
Med Teach ; : 1-9, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38818632

ABSTRACT

BACKGROUND: It is unclear whether alternating placements during clinical clerkship, without an explicit emphasis on clinical competencies, would bring about optimal educational outcomes. METHODS: This is an explanatory sequential mixed-methods research. We enrolled a convenience sample of 41 eight-year programme medical students in Sun Yat-sen University who received alternating placements during clerkship. The effects of competence-based approach (n = 21) versus traditional approach (n = 20) to clerkship teaching were compared. In the quantitative phase, course satisfaction was measured via an online survey and academic performance was determined through final scores on summative assessment. Then, in the qualitative phase, students were invited for semi-structured interviews about their learning experiences, and the transcripts were used for thematic analysis. RESULTS: Quantitative findings showed that students in the study group rated high course satisfaction and performed significantly better in their final scores compared with those in the control group. Qualitative findings from thematic analysis showed that students were relatively neutral about their preference on placement models, but clearly perceived, capitalised, and appreciated that their competencies were being cultivated by an instructor who was regarded as a positive role model. CONCLUSION: A competence-based approach to clerkship teaching resulted in better course satisfaction and academic performance, and was perceived, capitalised, and appreciated by students.

5.
Biomedicines ; 12(4)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38672207

ABSTRACT

It is crucial to regulate N-methyl-D-aspartate (NMDA) function bivalently depending on the central nervous system (CNS) conditions. CNS disorders with NMDA hyperfunction are involved in the pathogenesis of neurotoxic and/or neurodegenerative disorders with elevated D-serine, one of the NMDA receptor co-agonists. On the contrary, NMDA-enhancing agents have been demonstrated to improve psychotic symptoms and cognition in CNS disorders with NMDA hypofunction. Serine racemase (SR), the enzyme regulating both D- and L-serine levels through both racemization (catalysis from L-serine to D-serine) and ß-elimination (degradation of both D- and L-serine), emerges as a promising target for bidirectional regulation of NMDA function. In this study, we explored using dimethyl malonate (DMM), a pro-drug of the SR inhibitor malonate, to modulate NMDA activity in C57BL/6J male mice via intravenous administration. Unexpectedly, 400 mg/kg DMM significantly elevated, rather than decreased (as a racemization inhibitor), D-serine levels in the cerebral cortex and plasma. This outcome prompted us to investigate the regulatory effects of dodecagalloyl-α-D-xylose (α12G), a synthesized tannic acid analog, on SR activity. Our findings showed that α12G enhanced the racemization activity of human SR by about 8-fold. The simulated and fluorescent assay of binding affinity suggested a noncooperative binding close to the catalytic residues, Lys56 and Ser84. Moreover, α12G treatment can improve behaviors associated with major CNS disorders with NMDA hypofunction including hyperactivity, prepulse inhibition deficit, and memory impairment in animal models of positive symptoms and cognitive impairment of psychosis. In sum, our findings suggested α12G is a potential therapeutic for treating CNS disorders with NMDA hypofunction.

6.
Int J Mol Sci ; 25(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38474292

ABSTRACT

E0703, a new steroidal compound optimized from estradiol, significantly increased cell proliferation and the survival rate of KM mice and beagles after ionizing radiation. In this study, we characterize its preclinical pharmacokinetics (PK) and predict its human PK using a physiologically based pharmacokinetic (PBPK) model. The preclinical PK of E0703 was studied in mice and Rhesus monkeys. Asian human clearance (CL) values for E0703 were predicted from various allometric methods. The human PK profiles of E0703 (30 mg) were predicted by the PBPK model in Gastro Plus software 9.8 (SimulationsPlus, Lancaster, CA, USA). Furthermore, tissue distribution and the human PK profiles of different administration dosages and forms were predicted. The 0.002 L/h of CL and 0.005 L of Vss in mice were calculated and optimized from observed PK data. The plasma exposure of E0703 was availably predicted by the CL using the simple allometry (SA) method. The plasma concentration-time profiles of other dosages (20 and 40 mg) and two oral administrations (30 mg) were well-fitted to the observed values. In addition, the PK profile of target organs for E0703 exhibited a higher peak concentration (Cmax) and AUC than plasma. The developed E0703-PBPK model, which is precisely applicable to multiple species, benefits from further clinical development to predict PK in humans.


Subject(s)
Radiation-Protective Agents , Mice , Humans , Animals , Dogs , Models, Biological , Administration, Oral , Tissue Distribution , Pharmacokinetics
7.
Health Sci Rep ; 7(2): e1884, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38352696

ABSTRACT

Background: The effect of pain genes (NAV1, EHMT2, SP1, SLC6A4, COMT, OPRM1, OPRD1, CYP2D6, and CYP3A4) have not been reported previously in kidney renal clear cell carcinoma (KIRC) patients and thus we made a comprehensive analysis of pain genes in the prognosis of KIRC and tumor immunotherapy. Methods: In this study, TCGA, Kaplan-Meier plotter, Metascape, STRING, Human Protein Atlas, Single Cell Expression Atlas database, LinkedOmics, cBioPortal, MethSurv, CancerSEA, COSMIC database and R package (ggplot2, version 3.3.3) were used for comprehensive analysis of pain genes in KIRC. Pearson and Spearman correlation coefficients were for co-expression analysis. Immunotherapy and TISIDB database were used for tumor Immunotherapy. Results: Representative pain genes (SP1, SLC6A4, COMT, OPRD1, CYP2D6, and CYP3A4) were statistically significant (p < 0.0001) in the prognosis of KIRC. Immunotherapy (anti-PD-1 therapy, anti-PD-L1 therapy, and anti-CTLA4 therapy) and immunomodulator (immunoinhibitor, immunostimulator, and MHC molecule) in KIRC were significant associated with pain genes (SP1, SLC6A4, COMT, OPRD1, CYP2D6, and CYP3A4), which were the important addition to clinical decision making for patients. Conclusions: Our study uncovered a mechanism for the effect of pain genes on KIRC outcome via the modulation of associated co-expression gene networks, gene variation, and tumor Immunotherapy.

8.
Enzyme Microb Technol ; 175: 110410, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38340378

ABSTRACT

Prunin of desirable bioactivity and bioavailability can be transformed from plant-derived naringin by the key enzyme α-L-rhamnosidase. However, the production was limited by unsatisfactory properties of α-L-rhamnosidase such as thermostability and organic solvent tolerance. In this study, biochemical characteristics, and hydrolysis capacity of a novel α-L-rhamnosidase from Spirochaeta thermophila (St-Rha) were investigated, which was the first characterized α-L-rhamnosidase for Spirochaeta genus. St-Rha showed a higher substrate specificity towards naringin and exhibited excellent thermostability and methanol tolerance. The Km of St-Rha in the methanol cosolvent system was decreased 7.2-fold comparing that in the aqueous phase system, while kcat/Km value of St-Rha was enhanced 9.3-fold. Meanwhile, a preliminary conformational study was implemented through comparative molecular dynamics simulation analysis to explore the mechanism underlying the methanol tolerance of St-Rha for the first time. Furthermore, the catalytic ability of St-Rha for prunin preparation in the 20% methanol cosolvent system was explored, and 200 g/L naringin was transformed into 125.5 g/L prunin for 24 h reaction with a corresponding space-time yield of 5.2 g/L/h. These results indicated that St-Rha was a novel α-L-rhamnosidase suitable for hydrolyzing naringin in the methanol cosolvent system and provided a better alternative for improving the efficient production yield of prunin.


Subject(s)
Phlorhizin/analogs & derivatives , Spirochaeta , Methanol , Glycoside Hydrolases/chemistry , Solvents
9.
Genome Biol Evol ; 16(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38314830

ABSTRACT

Although the primate brain contains numerous functionally distinct structures that have experienced diverse genetic changes during the course of evolution and development, these changes remain to be explored in detail. Here we utilize two classic metrics from evolutionary biology, the evolutionary rate index (ERI) and the transcriptome age index (TAI), to investigate the evolutionary alterations that have occurred in each area and developmental stage of the primate brain. We observed a higher evolutionary rate for those genes expressed in the non-cortical areas during primate evolution, particularly in human, with the highest rate of evolution being exhibited at brain developmental stages between late infancy and early childhood. Further, the transcriptome age of the non-cortical areas was lower than that of the cerebral cortex, with the youngest age apparent at brain developmental stages between late infancy and early childhood. Our exploration of the evolutionary patterns manifest in each brain area and developmental stage provides important reference points for further research into primate brain evolution.


Subject(s)
Brain , Primates , Animals , Humans , Child, Preschool , Primates/genetics , Gene Expression Profiling , Cerebral Cortex , Genomics
10.
Mol Biol Evol ; 41(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38175672

ABSTRACT

Although previous studies have identified human-specific accelerated regions as playing a key role in the recent evolution of the human brain, the characteristics and cellular functions of rapidly evolving conserved elements (RECEs) in ancestral primate lineages remain largely unexplored. Here, based on large-scale primate genome assemblies, we identify 888 RECEs that have been highly conserved in primates that exhibit significantly accelerated substitution rates in the ancestor of the Simiiformes. This primate lineage exhibits remarkable morphological innovations, including an expanded brain mass. Integrative multiomic analyses reveal that RECEs harbor sequences with potential cis-regulatory functions that are activated in the adult human brain. Importantly, genes linked to RECEs exhibit pronounced expression trajectories in the adult brain relative to the fetal stage. Furthermore, we observed an increase in the chromatin accessibility of RECEs in oligodendrocytes from individuals with Alzheimer's disease (AD) compared to that of a control group, indicating that these RECEs may contribute to brain aging and AD. Our findings serve to expand our knowledge of the genetic underpinnings of brain function during primate evolution.


Subject(s)
Alzheimer Disease , Animals , Humans , Alzheimer Disease/genetics , Evolution, Molecular , Primates/genetics , Brain
11.
ESC Heart Fail ; 11(2): 1110-1120, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38266632

ABSTRACT

AIMS: Red blood cell distribution width-to-albumin ratio (RAR), an innovate biomarker of inflammation, can independently predict adverse cardiovascular outcomes. However, the association between RAR and prognosis in patients with non-ischaemic heart failure (NIHF) remains unclear. METHODS AND RESULTS: A total of 2077 NIHF patients admitted to the Heart Failure Care Unit, Fuwai Hospital, were consecutively enrolled from December 2006 to October 2017 in this retrospective study. The primary endpoint was a composite outcome of all-cause mortality and heart transplantation. The correlation between RAR and the composite outcome was assessed by the Kaplan-Meier survival analysis and the Cox regression analysis. Incremental predictive values and the clinical performance of RAR for all-cause mortality or heart transplantation were also assessed based on a 12-variable traditional risk model. The median follow-up time in this study was 1433 (1341, 1525) days. As the gender no longer satisfied the Cox proportional risk assumption after 1150 days, we set 1095 days as the follow-up time for analysis. A total of 500 patients reached the composite outcome. Multivariable Cox regression showed that per log2 increase of RAR was significantly associated with a 132.9% [hazard ratio 2.329, 95% confidence interval (CI) 1.677-3.237, P < 0.001] increased risk of all-cause mortality or heart transplantation. Better model discrimination [concordance index: 0.766 (95% CI 0.754-0.778) vs. 0.758 (95% CI 0.746-0.770), P < 0.001], calibration (Akaike information criterion: 1487.3 vs. 1495.74; Bayesian information criterion: 1566.25 vs. 1569.43; Brier score: 1569.43 vs. 1569.43; likelihood ratio test P < 0.001), and reclassification (integrated discrimination improvement: 1.35%, 95% CI 0.63-2.07%, P < 0.001; net reclassification improvement: 13.73%, 95% CI 2.05-27.18%, P = 0.034) were improved after adding RAR to the traditional model (P < 0.001 for all). A higher overall net benefit was also obtained in the threshold risk probability of 20-55%. CONCLUSIONS: High level of RAR was an independent risk factor of poor outcome in NIHF.


Subject(s)
Heart Failure , Humans , Retrospective Studies , Bayes Theorem , Prognosis , Erythrocytes
12.
J Environ Manage ; 350: 119633, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38039707

ABSTRACT

In order to achieve zero discharge and resource utilization of industrial high salt wastewater, a hybrid system of mechanical vapor recompression (MVR) and hollow fiber vacuum membrane distillation (HFVMD) was constructed, and several experiments of air tightness, single working condition and multiple working conditions were carried out with ammonium chloride solution as feed, then thermal economic performance were evaluated via a single factor analysis method. The obtained results showed that the system had excellent airtightness to ensure normal evaporation experiment, and high separation efficiency of 99.9% and lower evaporation energy consumption to achieve high efficient separation by combining the advantages of the hydrophobic membrane evaporation and latent heat recovery in view of MVR and HFVMD technologies. Furthermore, increasing feed temperature and feed flow rate increased evaporation rate and decreased evaporation energy consumption, while increasing feed concentration decreased evaporation rate and increased evaporation energy consumption. Finally, the single factor analysis indicated that total investment cost, annual operation cost and annual evaporation capacity were the main factors while environmental cost and equipment service life were the secondary factors which affected the specific evaporation cost. The above research provides theoretical and experimental bases for the development of the proposed system in the future.


Subject(s)
Distillation , Water Purification , Vacuum , Distillation/methods , Temperature , Hot Temperature , Water Purification/methods
13.
Sci China Life Sci ; 67(4): 765-777, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38110796

ABSTRACT

Human-specific insertions play important roles in human phenotypes and diseases. Here we reported a 446-bp insertion (Insert-446) in intron 11 of the TBC1D8B gene, located on chromosome X, and traced its origin to a portion of intron 6 of the EBF1 gene on chromosome 5. Interestingly, Insert-446 was present in the human Neanderthal and Denisovans genomes, and was fixed in humans after human-chimpanzee divergence. We have demonstrated that Insert-446 acts as an enhancer through binding transcript factors that promotes a higher expression of human TBC1D8B gene as compared with orthologs in macaques. In addition, over-expression TBC1D8B promoted cell proliferation and migration through "a dual finger" catalytic mechanism (Arg538 and Gln573) in the TBC domain in vitro and knockdown of TBC1D8B attenuated tumorigenesis in vivo. Knockout of Insert-446 prevented cell proliferation and migration in cancer and normal cells. Our results reveal that the human-specific Insert-446 promotes cell proliferation and migration by upregulating the expression of TBC1D8B gene. These findings provide a significant insight into the effects of human-specific insertions on evolution.


Subject(s)
Gene Expression Regulation, Neoplastic , Humans , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Introns
14.
J Med Virol ; 95(11): e29208, 2023 11.
Article in English | MEDLINE | ID: mdl-37947293

ABSTRACT

The main proteases (Mpro ) are highly conserved cysteine-rich proteins that can be covalently modified by numerous natural and synthetic compounds. Herein, we constructed an integrative approach to efficiently discover covalent inhibitors of Mpro from complex herbal matrices. This work begins with biological screening of 60 clinically used antiviral herbal medicines, among which Lonicera japonica Flos (LJF) demonstrated the strongest anti-Mpro effect (IC50 = 37.82 µg/mL). Mass spectrometry (MS)-based chemical analysis and chemoproteomic profiling revealed that LJF extract contains at least 50 constituents, of which 22 exhibited the capability to covalently modify Mpro . We subsequently verified the anti-Mpro effects of these covalent binders. Gallic acid and quercetin were found to potently inhibit severe acute respiratory syndrome coronavirus 2 Mpro in dose- and time- dependent manners, with the IC50 values below 10 µM. The inactivation kinetics, binding affinity and binding mode of gallic acid and quercetin were further characterized by fluorescence resonance energy transfer, surface plasmon resonance, and covalent docking simulations. Overall, this study established a practical approach for efficiently discovering the covalent inhibitors of Mpro from herbal medicines by integrating target-based high-throughput screening and MS-based assays, which would greatly facilitate the discovery of key antiviral constituents from medicinal plants.


Subject(s)
COVID-19 , Plants, Medicinal , Humans , SARS-CoV-2 , High-Throughput Screening Assays , Quercetin/pharmacology , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Plant Extracts/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Gallic Acid/pharmacology , Molecular Docking Simulation
15.
Commun Biol ; 6(1): 1108, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37914914

ABSTRACT

Recent findings have shown that fatty acid metabolism is profoundly involved in ferroptosis. However, the role of cholesterol in this process remains incompletely understood. In this work, we show that modulating cholesterol levels changes vulnerability of cells to ferroptosis. Cholesterol alters metabolic flux of the mevalonate pathway by promoting Squalene Epoxidase (SQLE) degradation, a rate limiting step in cholesterol biosynthesis, thereby increasing both CoQ10 and squalene levels. Importantly, whereas inactivation of Farnesyl-Diphosphate Farnesyltransferase 1 (FDFT1), the branch point of cholesterol biosynthesis pathway, exhibits minimal effect on ferroptosis, simultaneous inhibition of both CoQ10 and squalene biosynthesis completely abrogates the effect of cholesterol. Mouse models of ischemia-reperfusion and doxorubicin induced hepatoxicity confirm the protective role of cholesterol in ferroptosis. Our study elucidates a potential role of ferroptosis in diseases related to dysregulation of cholesterol metabolism and suggests a possible therapeutic target that involves ferroptotic cell death.


Subject(s)
Ferroptosis , Squalene , Mice , Animals , Squalene/pharmacology , Ubiquinone/pharmacology , Cholesterol/metabolism
16.
Mol Biol Evol ; 40(8)2023 08 03.
Article in English | MEDLINE | ID: mdl-37494289

ABSTRACT

Although the continual expansion of the brain during primate evolution accounts for our enhanced cognitive capabilities, the drivers of brain evolution have scarcely been explored in these ancestral nodes. Here, we performed large-scale comparative genomic, transcriptomic, and epigenomic analyses to investigate the evolutionary alterations acquired by brain genes and provide comprehensive listings of innovatory genetic elements along the evolutionary path from ancestral primates to human. The regulatory sequences associated with brain-expressed genes experienced rapid change, particularly in the ancestor of the Simiiformes. Extensive comparisons of single-cell and bulk transcriptomic data between primate and nonprimate brains revealed that these regulatory sequences may drive the high expression of certain genes in primate brains. Employing in utero electroporation into mouse embryonic cortex, we show that the primate-specific brain-biased gene BMP7 was recruited, probably in the ancestor of the Simiiformes, to regulate neuronal proliferation in the primate ventricular zone. Our study provides a comprehensive listing of genes and regulatory changes along the brain evolution lineage of ancestral primates leading to human. These data should be invaluable for future functional studies that will deepen our understanding not only of the genetic basis of human brain evolution but also of inherited disease.


Subject(s)
Brain , Primates , Mice , Humans , Animals , Primates/genetics , Brain/metabolism , Evolution, Molecular
17.
Oncologist ; 28(12): e1239-e1247, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37329569

ABSTRACT

BACKGROUND: For patients with unresectable hepatocellular carcinoma (HCC), the first-line therapeutic options are still relatively limited, and treatment outcomes remain poor. We aimed to assess the efficacy and safety of anlotinib combined with toripalimab as first-line therapy for unresectable HCC. METHODS: In this single-arm, multicenter, phase II study (ALTER-H-003), patients with advanced HCC without previous systemic anticancer therapy were recruited. Eligible patients were given anlotinib (12 mg on days 1-14) combined with toripalimab (240 mg on day 1) in a 3-week cycle. The primary endpoint was the objective response rate (ORR) by immune-related Response Evaluation Criteria in Solid Tumours (irRECIST)/RECIST v1.1 and modified RECIST (mRECIST). Secondary endpoints included disease control rate (DCR), duration of response (DoR), progression-free survival (PFS), overall survival (OS), and safety. RESULTS: Between January 2020 and Jul 2021, 31 eligible patients were treated and included in the full analysis set. At data cutoff (January 10, 2023), the ORR was 29.0% (95% CI: 12.1%-46.0%) by irRECIST/RECIST v1.1, and 32.3% (95% CI: 14.8%-49.7%) by mRECIST criteria, respectively. Confirmed DCR and median DoR by irRECIST/RECIST v1.1 and mRECIST criteria were 77.4 % (95% CI: 61.8%-93.0%) and not reached (range: 3.0-22.5+ months), respectively. Median PFS was 11.0 months (95% CI: 3.4-18.5 months) and median OS was 18.2 months (95% CI: 15.8-20.5 months). Of the 31 patients assessed for adverse events (AEs), the most common grade ≥ 3 treatment-related AEs were hand-foot syndrome (9.7%, 3/31), hypertension (9.7%, 3/31), arthralgia (9.7%, 3/31), abnormal liver function (6.5%, 2/31), and decreased neutrophil counts (6.5%, 2/31). CONCLUSIONS: Anlotinib combined with toripalimab showed promising efficacy and manageable safety in Chinese patients with unresectable HCC in the first-line setting. This combination therapy may offer a potential new therapeutic approach for patients with unresectable HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Prospective Studies , Liver Neoplasms/drug therapy
18.
Science ; 380(6648): 913-924, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37262173

ABSTRACT

Comparative analysis of primate genomes within a phylogenetic context is essential for understanding the evolution of human genetic architecture and primate diversity. We present such a study of 50 primate species spanning 38 genera and 14 families, including 27 genomes first reported here, with many from previously less well represented groups, the New World monkeys and the Strepsirrhini. Our analyses reveal heterogeneous rates of genomic rearrangement and gene evolution across primate lineages. Thousands of genes under positive selection in different lineages play roles in the nervous, skeletal, and digestive systems and may have contributed to primate innovations and adaptations. Our study reveals that many key genomic innovations occurred in the Simiiformes ancestral node and may have had an impact on the adaptive radiation of the Simiiformes and human evolution.


Subject(s)
Evolution, Molecular , Primates , Animals , Humans , Genome , Genomics , Phylogeny , Primates/anatomy & histology , Primates/classification , Primates/genetics , Gene Rearrangement , Brain/anatomy & histology
19.
Int J Cardiol ; 387: 131109, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37271284

ABSTRACT

BACKGROUND: Atherosclerosis is a chronic inflammatory disease with its molecular basis incompletely understood. Here, we determined whether the Golgi phosphoprotein 73 (GP73), a novel protein highly related to inflammation and disrupted lipid metabolism, was involved in the development of atherosclerosis. METHODS: Public microarray databases of human vascular samples were analyzed for expression patterns. Apolipoprotein-E-gene-deficient (ApoE-/-) mice (8-week-old) were randomly assigned to either a chow diet group or a high-fat diet group. The levels of serum GP73, lipid profiles and key inflammatory cytokines were determined by ELISA. The aortic root plaque was isolated and used for by Oil Red O staining. PMA-differentiated THP-1 macrophages were transfected with GP73 small interfering RNA (siRNA) or infected with adenovirus expressing GP73, and then stimulated with oxidized low density lipoprotein (ox-LDL). The expressions of pro-inflammatory cytokines and signal pathway key targets were determined by ELISA kit and Western blot respectively. In addition, ichloro-dihydro-fluorescein diacetate (DCFH-DA) was used to measure the intracellular ROS levels. RESULTS: The expressions of GP73 and NLRP3 were substantially upregulated in human atherosclerotic lesions. There were significant linear correlations between GP73 and inflammatory cytokines expressions. High-fat diet-induced atherosclerosis and increased levels of plasma inflammatory mediators (IL-1ß, IL-18, and TNF-α) were observed in ApoE-/- mice. Besides, the expressions of GP73 in the aorta and serum were significantly upregulated and positively correlated with the NLRP3 expression. In the THP-1 derived macrophages, ox-LDL treatment upregulated the expressions of GP73 and NLRP3 proteins and activated the inflammatory responses in a concentration-dependent and time-dependent manner. Silencing of GP73 attenuated the inflammatory response and rescued the decreased migration induced by ox-LDL, inhibiting the NLRP3 inflammasome signaling and the ROS and p-NF-κB activation. CONCLUSIONS: We demonstrated that GP73 promoted the ox-LDL-induced inflammation in macrophages by affecting the NF-κB/NLRP3 inflammasome signaling, and may play a role in atherosclerosis.


Subject(s)
Atherosclerosis , Inflammasomes , Humans , Mice , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NF-kappa B/metabolism , Phosphoproteins/metabolism , Reactive Oxygen Species/metabolism , Mice, Knockout, ApoE , Lipoproteins, LDL/metabolism , Signal Transduction , Macrophages/metabolism , Inflammation/metabolism , Tumor Necrosis Factor-alpha , Atherosclerosis/genetics , Apolipoproteins E
20.
Mol Biol Evol ; 40(5)2023 05 02.
Article in English | MEDLINE | ID: mdl-37134013

ABSTRACT

HIV-1 is a highly host-specific retrovirus that infects humans but not most nonhuman primates. Thus, the lack of a suitable primate model that can be directly infected with HIV-1 hinders HIV-1/AIDS research. In the previous study, we have found that the northern pig-tailed macaques (NPMs) are susceptible to HIV-1 infection but show a nonpathogenic state. In this study, to understand this macaque-HIV-1 interaction, we assembled a de novo genome and longitudinal transcriptome for this species during the course of HIV-1 infection. Using comparative genomic analysis, a positively selected gene, Toll-like receptor 8, was identified with a weak ability to induce an inflammatory response in this macaque. In addition, an interferon-stimulated gene, interferon alpha inducible protein 27, was upregulated in acute HIV-1 infection and acquired an enhanced ability to inhibit HIV-1 replication compared with its human ortholog. These findings coincide with the observation of persistently downregulated immune activation and low viral replication and can partially explain the AIDS-free state in this macaque following HIV-1 infection. This study identified a number of unexplored host genes that may hamper HIV-1 replication and pathogenicity in NPMs and provided new insights into the host defense mechanisms in cross-species infection of HIV-1. This work will facilitate the adoption of NPM as a feasible animal model for HIV-1/AIDS research.


Subject(s)
HIV Infections , HIV-1 , Simian Immunodeficiency Virus , Animals , Humans , Macaca nemestrina , HIV-1/genetics , Genomics , Simian Immunodeficiency Virus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...