Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2793: 41-54, 2024.
Article in English | MEDLINE | ID: mdl-38526722

ABSTRACT

Resistance to therapeutic antibodies caused by on-target point mutations is a major obstacle in anticancer therapy, creating an "unmet clinical need." To tackle this problem, researchers are developing new generations of antibody drugs that can overcome the resistance mechanisms of existing agents. We have previously reported a structure-guided and phage-assisted evolution (SGAPAE) approach to evolve cetuximab, a therapeutic antibody, to effectively reverse the resistance driven by EGFRS492R or EGFRG465R mutations, without changing the binding epitope or compromising the antibody efficacy. In this protocol, we provide detailed instructions on how to use the SGAPAE approach to evolve cetuximab, which can also be applied to other therapeutic antibodies for reversing on-target point mutation-mediated resistance. The protocol consists of four steps: structure preparation, computational prediction, phage display library construction, and antibody candidate selection.


Subject(s)
Antibodies, Monoclonal , Bacteriophages , Cetuximab , Point Mutation , ErbB Receptors/metabolism , Bacteriophages/metabolism , Antibodies, Monoclonal, Humanized/genetics
2.
Nat Commun ; 13(1): 4431, 2022 07 30.
Article in English | MEDLINE | ID: mdl-35907884

ABSTRACT

Acquired resistance to cetuximab in colorectal cancers is partially mediated by the acquisition of mutations located in the cetuximab epitope in the epidermal growth factor receptor (EGFR) ectodomain and hinders the clinical application of cetuximab. We develop a structure-guided and phage-assisted evolution approach for cetuximab evolution to reverse EGFRS492R- or EGFRG465R-driven resistance without altering the binding epitope or undermining antibody efficacy. Two evolved cetuximab variants, Ctx-VY and Ctx-Y104D, exhibit a restored binding ability with EGFRS492R, which harbors the most common resistance substitution, S492R. Ctx-W52D exhibits restored binding with EGFR harboring another common cetuximab resistance substitution, G465R (EGFRG465R). All the evolved cetuximab variants effectively inhibit EGFR activation and downstream signaling and induce the internalization and degradation of EGFRS492R and EGFRG465R as well as EGFRWT. The evolved cetuximab variants (Ctx-VY, Ctx-Y104D and Ctx-W52D) with one or two amino acid substitutions in the complementarity-determining region inherit the optimized physical and chemical properties of cetuximab to a great extent, thus ensuring their druggability. Our data collectively show that structure-guided and phage-assisted evolution is an efficient and general approach for reversing receptor mutation-mediated resistance to therapeutic antibody drugs.


Subject(s)
Antineoplastic Agents , Bacteriophages , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/pharmacology , Bacteriophages/genetics , Cell Line, Tumor , Cetuximab/pharmacology , Cetuximab/therapeutic use , Drug Resistance, Neoplasm/genetics , Epitopes
3.
Chem Sci ; 12(40): 13477-13482, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34777767

ABSTRACT

Cell-surface proteins, working as key agents in various diseases, are the targets for around 66% of approved human drugs. A general strategy to selectively detect these proteins in a real-time manner is expected to facilitate the development of new drugs and medical diagnoses. Although brilliant successes were attained using small-molecule probes, they could cover a narrow range of targets due to the lack of suitable ligands and some of them suffer from selectivity issues. We report herein an antibody-based fluorogenic probe prepared via a two-step chemical modification under physiological conditions, to fulfill the selective recognition and wash-free imaging of membrane proteins, establishing a modular strategy with broad implications for biochemical research and for therapeutics.

5.
Biomed Res Int ; 2021: 9953664, 2021.
Article in English | MEDLINE | ID: mdl-34212043

ABSTRACT

Cirsimarin is a bioactive antilipogenic flavonoid isolated from the cotyledons of Abrus precatorius and represents one of the most abundant flavonoids present in this plant species. Cirsimarin exhibits excellent antioxidant, lipolysis, and other biological properties; it can effectively trigger lipid movement and demonstrates antiobesity effects. In this work, an ultra-high-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was developed for the determination of cirsimarin in rat plasma after intravenous administration. A standard curve of cirsimarin in blank rat plasma was generated over the concentration range of 1-3000 ng/mL. Six rats were administered cirsimarin intravenously (1 mg/kg). The method only required 50 µL of plasma for sample preparation, and the plasma proteins were precipitated with acetonitrile to pretreat the plasma sample. The precisions of cirsimarin in rat plasma were less than 14%, while the accuracies varied between 92.5% and 107.3%. In addition, the matrix effect varied between 103.6% and 107.4%, while the recoveries were greater than 84.2%. This UPLC-MS/MS method was then applied in measuring the pharmacokinetics of cirsimarin in rats. The AUC(0-t) values of cirsimarin from the pharmacokinetic analysis were 1068.2 ± 359.2 ng/mL·h for intravenous administration. The half-life (t 1/2) was 1.1 ± 0.4 h (intravenous), indicating that the metabolism of the compound was quick in the rats. Exploring the pharmacokinetics of cirsimarin in vivo can help better understand its metabolism.


Subject(s)
Chromatography, High Pressure Liquid/methods , Flavones/blood , Flavones/pharmacokinetics , Glycosides/blood , Glycosides/pharmacokinetics , Plasma/chemistry , Tandem Mass Spectrometry/methods , Animals , Drugs, Chinese Herbal/pharmacokinetics , Flavonoids/blood , Flavonoids/pharmacokinetics , Male , Rats , Rats, Sprague-Dawley
6.
Pathogens ; 10(6)2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34208061

ABSTRACT

Through 4 June 2021, COVID-19 has caused over 172.84 million cases of infection and 3.71 million deaths worldwide. Due to its rapid dissemination and high mutation rate, it is essential to develop a vaccine harboring multiple epitopes and efficacious against multiple variants to prevent the immune escape of SARS-CoV-2. An in silico approach based on the viral genome was applied to identify 19 high-immunogenic B-cell epitopes and 499 human leukocyte antigen (HLA)-restricted T-cell epitopes. Thirty multi-epitope peptide vaccines were designed by iNeo-Suite and manufactured by solid-phase synthesis. Docking analysis confirmed stable hydrogen bonds of epitopes with their corresponding HLA alleles. When four peptide candidates derived from the spike protein of SARS-CoV-2 were selected to immunize mice, a significantly larger amount of total IgG in serum, as well as an increase of CD19+ cells in the inguinal lymph nodes, were observed in the peptide-immunized mice compared to the control. The ratios of IFN-γ-secreting lymphocytes in CD4+ or CD8+ T-cells in the peptide-immunized mice were higher than those in the control mice. There were also a larger number of IFN-γ-secreting T-cells in the spleens of peptide-immunized mice. The peptide vaccines in this study successfully elicited antigen-specific humoral and cellular immune responses in mice. To further validate the safety and efficacy of this vaccine, animal studies using a primate model, as well as clinical trials in humans, are required.

7.
Drug Des Devel Ther ; 14: 1739-1747, 2020.
Article in English | MEDLINE | ID: mdl-32440099

ABSTRACT

BACKGROUND: Lidocaine has cardiovascular and neurologic toxicity, which is dose-dependent. Due to CYP3A4-involved metabolism, lidocaine may be prone to drug-drug interactions. MATERIALS AND METHODS: Given statins have the possibility of combination with lidocaine in the clinic, we established in vitro models to assess the effect of statins on the metabolism of lidocaine. Further pharmacokinetic alterations of lidocaine and its main metabolite, monoethylglycinexylidide in rats influenced by simvastatin, were investigated. RESULTS: In vitro study revealed that simvastatin, among the statins, had the most significant inhibitory effect on lidocaine metabolism with IC50 of 39.31 µM, 50 µM and 15.77 µM for RLM, HLM and CYP3A4.1, respectively. Consistent with in vitro results, lidocaine concomitantly used with simvastatin in rats was associated with 1.2-fold AUC(0-t), 1.2-fold AUC(0-∞), and 20%-decreased clearance for lidocaine, and 1.4-fold Cmax for MEGX compared with lidocaine alone. CONCLUSION: Collectively, these results implied that simvastatin could evidently inhibit the metabolism of lidocaine both in vivo and in vitro. Accordingly, more attention and necessary therapeutic drug monitoring should be paid to patients with the concomitant coadministration of lidocaine and simvastatin so as to avoid unexpected toxicity.


Subject(s)
Lidocaine/metabolism , Simvastatin/pharmacology , Animals , Anti-Arrhythmia Agents/metabolism , Dose-Response Relationship, Drug , Humans , Kinetics , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Molecular Structure , Rats , Structure-Activity Relationship
8.
Onco Targets Ther ; 12: 11597-11608, 2019.
Article in English | MEDLINE | ID: mdl-31920346

ABSTRACT

BACKGROUND: The aberrant expression of HER2 is highly associated with tumour occurrence and metastasis, therefore HER2 is extensively targeted for tumour immunotherapy. For example, trastuzumab and pertuzumab are FDA-approved monoclonal antibodies that target HER2-positive tumour cells. Despite their advances in clinical applications, emerging resistance to these two HER2-targeting antibodies has hindered their further application. Somatic mutations in HER2 receptor have been identified as one of the major reasons for resistance to anti-HER2 antibodies. METHODS: We analysed the frequency of somatic mutations in various tumour types based on TCGA and COSMIC databases. Then, the effect of the most frequent mutation (S310F) on the interaction between pertuzumab and HER2 was analysed by molecular modelling analysis. The effect of the S310F mutation was further evaluated through multiple in vitro binding experiments and antitumour activity assays. RESULTS: We found through bioinformatics analysis that S310F, an activating mutation in the HER2 extracellular domain, was the most frequent mutation in HER2. The S310F mutation was shown to confer resistance of HER2-positive tumour cells to pertuzumab treatment. With molecular modelling analysis, we confirmed the possibility that the S310F mutation might disrupt the interaction between pertuzumab and HER2 as a result of a significant change in the critical residue S310. Further functional analyses revealed that the S310F mutation completely abolished pertuzumab binding to HER2 receptor and inhibited pertuzumab antitumour efficacy. CONCLUSION: We demonstrated the loss-of-function mechanism underlying pertuzumab resistance in HER2-positive tumour cells bearing the S310F mutation.

SELECTION OF CITATIONS
SEARCH DETAIL
...