Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Updates Surg ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985377

ABSTRACT

Traditional ostomy bags commonly cause skin allergy and inflammation around the stoma, as well as leakage. This study aimed to examine the effect of a 3D-printed ostomy bag with sensors and stimulators on stoma nursing. This is a randomized controlled trial. This trial involved 113 distinct individuals who undergo colorectal cancer surgery and intestinal obstruction surgery, with resulting stoma. The date of trial registration was January 17, 2019, and the date of first recruitment was May 1, 2019. Patients were randomized into two groups: intelligent 3D-printed ostomy bag (3D group, n = 57) and Coloplast one-piece pouching systems (control group, n = 56). The shape of ostomy and the surrounding skin of all the 57 patients of the 3D group was scanned by a handheld 3D scanner. Then, the ostomy bag chassis (also known as skin barrier) was 3D printed and an intelligent device adhered to the ostomy bag. The wearing time, leakage rate, the Discoloration, Erosion, and Tissue Overgrowth (DET) score, and the Acceptance of Illness Scale (AIS) were observed. In the 3D-printed bag group, the time to wear (0.7 ± 0.4 m) was significantly shorter than that of the control group (9.1 ± 3.5 m). The leakage rate of 3D-printed bag (1.75%) was significantly lower than that of the control group (16.1%). The DET score for the 3D-printed bag group was also lower than that of the control group, and the AIS score for the 3D-printed bag group was higher than that of the control group. The 3D-printed ostomy bags and the linked computer program can significantly reduce wearing time, leakage rate, and stoma complications. This may improve the quality of home ostomy care for patients and reduce the incidence of skin complications around the stoma.Registration number: ChiCTR1900020752.

2.
J Mater Chem B ; 12(6): 1624-1635, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38270492

ABSTRACT

Colorectal cancer is one of the most common malignant tumors in the world, and its treatment strategies mainly include surgical resection, chemotherapy, adjuvant radiotherapy, and immunotherapy. Among them, chemotherapy inevitably produces systemic toxicity due to the lack of tumor targeting properties and drug resistance caused by long-term medication frequently occurs, immensely constraining the efficacy of chemotherapy alone. To solve the above-mentioned problems, rhamnolipid was used to encapsulate the chemotherapeutic drug 5-FU and photothermal agent bismuthene nanosheets (BiNS), chitosan was applied as the shell of the nanoparticle, and BiNS@RHL-CS/5-FU NPs for oral administration was successfully prepared. When transported in the stomach and small intestine, the double protection of rhamnolipid and chitosan shell prevented the early release of BiNS and 5-FU. When transported to the colon, ß-glycosidase existing in the microenvironment along with elevated pH degraded the chitosan shell, and the reduction in particle size was beneficial for tumor tissue to uptake nanoparticles, thus greatly improving the tumor targeting ability of 5-FU and reducing the systemic toxicity. Due to the presence of BiNS, 1.0 W cm-2 808 nm laser irradiation significantly increased the temperature of the tumor site, not only killing tumor cells directly but also promoting cell uptake and penetration of nanoparticles in the tumor tissue, accelerating the release of 5-FU and improving the sensitivity of tumor cells to chemotherapy, eventually solving the shortcomings of traditional chemotherapy alone. Excellent anti-tumor efficacy has been achieved in both in vitro and in vivo experiments.


Subject(s)
Chitosan , Colorectal Neoplasms , Hyperthermia, Induced , Nanoparticles , Humans , Chitosan/chemistry , Nanoparticles/chemistry , Fluorouracil , Tumor Microenvironment
3.
Diabetes Metab Syndr Obes ; 16: 3691-3705, 2023.
Article in English | MEDLINE | ID: mdl-38028999

ABSTRACT

Presently, obesity has emerged as a significant global public health concern due to its escalating prevalence and incidence rates. The gut microbiota, being a crucial environmental factor, has emerged as a key player in the etiology of obesity. Nevertheless, the intricate and specific interactions between obesity and gut microbiota, along with the underlying mechanisms, remain incompletely understood. This review comprehensively summarizes the gut microbiota characteristics in obesity, the mechanisms by which it induces obesity, and explores targeted therapies centered on gut microbiota restoration.

4.
Gastric Cancer ; 26(4): 565-579, 2023 07.
Article in English | MEDLINE | ID: mdl-37062785

ABSTRACT

BACKGROUND: Gastric cancer (GC) is a cancer of the gastrointestinal tract that is highly malignant and has poor prognosis. Circular RNAs are a class of nonclassical RNA molecules that have been determined to be involved in GC malignancy in various ways. However, the underlying function and mechanism of circTDRD3 in gastric cancer remain largely unknown. METHODS: We analyzed circTDRD3 expression in databases and verified the findings in GC cell lines and tissue specimens. A series of functional gene overexpression and knockdown assays in vivo and in vitro were carried out to investigate the role of circTDRD3 in proliferation and metastasis. Here, we revealed the role of the miR-891b/ITGA2 axis by analyzing bioinformatics datasets. Furthermore, we performed dual-luciferase, fluorescence in situ hybridization, RNA pull-down, and functional rescue experiments to examine the relationships between circTDRD3 and its interacting molecules. Western blot confirmed the positive regulatory role of circTDRD3 in the AKT signaling pathway. A promoting effect of ATF4 on circTDRD3 was determined through chromatin immunoprecipitation. RESULTS: CircTDRD3 was significantly overexpressed in GC tissues compared with adjacent benign tissue, and its expression level was positively correlated with tumor volume and lymph node metastasis. CircTDRD3 promoted GC cell proliferation and migration in vitro and in vivo. Mechanistically, circTDRD3 exerted a tumor-promoting effect by regulating the miR-891b/ITGA2 axis and AKT signaling pathway in a positive feedback manner mediated by the transcription factor ATF4. CONCLUSIONS: ATF4-mediated circTDRD3 overexpression modulates the proliferation and metastasis of GC cells through the miR-891b/ITGA2 axis in a positive feedback manner.


Subject(s)
MicroRNAs , Stomach Neoplasms , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Stomach Neoplasms/pathology , In Situ Hybridization, Fluorescence , Signal Transduction , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...