Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
J Ethnopharmacol ; : 118343, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38750985

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The Yi-Fei San-Jie pill (YFSJ) is a well-known Chinese medicine that has been used to treat non-small cell lung cancer in China for decades. AIM OF THE STUDY: Previous studies have shown that YFSJ combined with gefitinib can effectively inhibit the proliferation of gefitinib-resistant non-small cell lung cancer (NSCLC) cell lines by promoting apoptosis and autophagy, but the molecular biological mechanisms involved and whether YFSJ combined with gefitinib can have synergistic effects still need to be further explored. Thus, the present study aimed to establish an in silico and experimental framework to decipher the underlying mechanism by which YFSJ augments the efficacy of gefitinib in treating NSCLC. MATERIALS AND METHODS: Integrated approaches, including microarray analysis, network pharmacology, RNA sequencing, bioinformatics algorithm analysis and in vivo and in vitro experiments, were applied to elucidate the underlying mechanism. RESULTS: Analysis of microarray datasets indicated that gefitinib may play a role in the regulation of the epithelial-mesenchymal transition (EMT) of PC9 cells. EMT-related Gene Ontology (GO) terms and the MAPK pathway were found to be enriched in the differentially expressed genes (DEGs), and a decreasing trend was observed in the EMT score. Network pharmacology analysis revealed that the potential NSCLC-related targets of YFSJ also showed enrichment in EMT-related GO terms and the MAPK pathway. Experimental findings demonstrated that combined YFSJ-treated serum and gefitinib treatment significantly inhibited PC9 cell migration and invasion. In addition, the combined treatment dramatically reduced the tumour volume in an animal model. The effectiveness of the combination treatment surpassed that of gefitinib alone in both cell and animal experiments. RNA sequencing analysis revealed significant enrichment of DEGs in EMT-related GO terms for the gefitinib treatment group, YFSJ treatment group, and combination treatment group compared to the control group. Notably, the negative regulation of EMT showed significant enrichment in the DEGs of the combination treatment group. The MAPK pathway was significantly enriched among the different groups. Moreover, combined treatment with YFSJ and gefitinib may exert synergistic anti-NSCLC effects by inhibiting the p-p38 MAPK/GSK3ß signalling axis, subsequently suppressing downstream EMT processes. CONCLUSION: Combined treatment with YFSJ and gefitinib could enhance the sensitivity of NSCLC cells to gefitinib by suppressing EMT through the EGFR/p-p38 MAPK/GSK3ß signalling axis. YFSJ may serve as an important adjunctive medication for NSCLC patients receiving gefitinib treatment in clinical practice.

2.
Phytomedicine ; 128: 155526, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38564921

ABSTRACT

BACKGROUND: Atherosclerosis (AS) is an important cause of cardiovascular disease, posing a substantial health risk. Recognized as a chronic inflammatory disorder, AS hinges on the pivotal involvement of macrophages in arterial inflammation, participating in its formation and progression. Sangzhi alkaloid (SZ-A) is a novel natural alkaloid extracted from the mulberry branches, has extensive pharmacological effects and stable pharmacokinetic characteristics. However, the effects and mechanisms of SZ-A on AS remain unclear. PURPOSE: To explore the effect and underlying mechanisms of SZ-A on inflammation mediated by macrophages and its role in AS development. METHODS: Atherosclerosis was induced in vivo in apolipoprotein E-deficient mice through a high-fat and high-choline diet. We utilized macrophages and vascular endothelial cells to investigate the effects of SZ-A on macrophage polarization and its anti-inflammatory properties on endothelial cells in vitro. The transcriptomic analyses were used to investigate the major molecule that mediates cell-cell interactions and the antiatherogenic mechanisms of SZ-A based on AS, subsequently validated in vivo and in vitro. RESULTS: SZ-A demonstrated a significant inhibition in vascular inflammation and alleviation of AS severity by mitigating macrophage infiltration and modulating M1/M2 macrophage polarization in vitro and in vivo. Moreover, SZ-A effectively reduced the release of the proinflammatory mediator C-X-C motif chemokine ligand (CXCL)-10, predominantly secreted by M1 macrophages. This reduction in CXCL-10 contributed to improved endothelial cell function, reduced recruitment of additional macrophages, and inhibited the inflammatory amplification effect. This ultimately led to the suppression of atherogenesis. CONCLUSION: SZ-A exhibited potent anti-inflammatory effects by inhibiting macrophage-mediated inflammation, providing a new therapeutic avenue against AS. This is the first study demonstrating the efficacy of SZ-A in alleviating AS severity and offers novel insights into its anti-inflammatory mechanism.


Subject(s)
Alkaloids , Atherosclerosis , Macrophages , Morus , Animals , Atherosclerosis/drug therapy , Macrophages/drug effects , Mice , Alkaloids/pharmacology , Morus/chemistry , Male , Mice, Inbred C57BL , Anti-Inflammatory Agents/pharmacology , Diet, High-Fat , Humans , RAW 264.7 Cells , Mice, Knockout, ApoE , Endothelial Cells/drug effects , Apolipoproteins E
3.
Front Pharmacol ; 14: 1217400, 2023.
Article in English | MEDLINE | ID: mdl-37663266

ABSTRACT

Tumor-associated macrophages (TAMs) are essential components of the immune cell stroma of hepatocellular carcinoma. TAMs originate from monocytic myeloid-derived suppressor cells, peripheral blood monocytes, and kupffer cells. The recruitment of monocytes to the HCC tumor microenvironment is facilitated by various factors, leading to their differentiation into TAMs with unique phenotypes. TAMs can directly activate or inhibit the nuclear factor-κB, interleukin-6/signal transducer and signal transducer and activator of transcription 3, Wnt/ß-catenin, transforming growth factor-ß1/bone morphogenetic protein, and extracellular signal-regulated kinase 1/2 signaling pathways in tumor cells and interact with other immune cells via producing cytokines and extracellular vesicles, thus affecting carcinoma cell proliferation, invasive and migratory, angiogenesis, liver fibrosis progression, and other processes to participate in different stages of tumor progression. In recent years, TAMs have received much attention as a prospective treatment target for HCC. This review describes the origin and characteristics of TAMs and their mechanism of action in the occurrence and development of HCC to offer a theoretical foundation for further clinical research of TAMs.

4.
J Ginseng Res ; 47(2): 291-301, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36249948

ABSTRACT

Introduction: Non-small cell lung cancer (NSCLC) patients are particularly vulnerable to the Coronavirus Disease-2019 (COVID-19). Currently, no anti-NSCLC/COVID-19 treatment options are available. As ginsenoside Rg3 is beneficial to NSCLC patients and has been identified as an entry inhibitor of the virus, this study aims to explore underlying pharmacological mechanisms of ginsenoside Rg3 for the treatment of NSCLC patients with COVID-19. Methods: Based on a large-scale data mining and systemic biological analysis, this study investigated target genes, biological processes, pharmacological mechanisms, and underlying immune implications of ginsenoside Rg3 for NSCLC patients with COVID-19. Results: An important gene set containing 26 target genes was built. Target genes with significant prognostic value were identified, including baculoviral IAP repeat containing 5 (BIRC5), carbonic anhydrase 9 (CA9), endothelin receptor type B (EDNRB), glucagon receptor (GCGR), interleukin 2 (IL2), peptidyl arginine deiminase 4 (PADI4), and solute carrier organic anion transporter family member 1B1 (SLCO1B1). The expression of target genes was significantly correlated with the infiltration level of macrophages, eosinophils, natural killer cells, and T lymphocytes. Ginsenoside Rg3 may benefit NSCLC patients with COVID-19 by regulating signaling pathways primarily involved in anti-inflammation, immunomodulation, cell cycle, cell fate, carcinogenesis, and hemodynamics. Conclusions: This study provided a comprehensive strategy for drug discovery in NSCLC and COVID-19 based on systemic biology approaches. Ginsenoside Rg3 may be a prospective drug for NSCLC patients with COVID-19. Future studies are needed to determine the value of ginsenoside Rg3 for NSCLC patients with COVID-19.

5.
Phytomedicine ; 108: 154491, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36368285

ABSTRACT

BACKGROUND: Non-small cell lung cancer (NSCLC) accounts for almost 85% of lung cancer-related deaths worldwide. Xihuang Pill (XHP) is a representative anticancer Chinese patented medicine used to treat NSCLC in China. However, to date, a systematic analysis of XHP's antitumour effects and its impact on the immune microenvironment has not been performed. PURPOSE: Based on the systems biology strategy and experimental validation, the present study aimed to investigate the pharmacological mechanisms involved in treating NSCLC with XHP. METHODS: A subcutaneous tumour model was established to evaluate XHP's tumour-inhibitory effect in BALB/c nude mice. RNA sequencing (RNA-seq) and bioinformatics analysis were conducted to identify differentially expressed genes (DEGs) and signalling pathways related to XHP treatment. Network analysis based on network pharmacology and protein-to-protein networks was applied to identify the compounds and genes targeted by XHP. External data from the TCGA-NSCLC cohort were used to verify the clinical significance of XHP-targeted genes in NSCLC. The expression of survival-related candidate genes after XHP treatment was verified via qPCR. The protein expression of calcium voltage-gated channel subunit alpha 1C (CACNA1C) in different NSCLC cell lines was analysed in the Human Protein Atlas database (HPA) and DepMap Portal. Using the Estimation of STromal and Immune cells in MAlignant Tumour tissues using Expression data (ESTIMATE) algorithm and the single-sample gene set enrichment analysis (ssGSEA) algorithm uncovered the role of CACNA1C in the NSCLC tumour microenvironment (TME). RESULTS: XHP (2 g/kg/d) significantly inhibited the growth of transplanted A549 tumours. RNA-seq identified a total of 529 DEGs (189 upregulated and 340 downregulated). In addition, 542 GO terms, 41 significant KEGG pathways, 9 upregulated hallmarks pathways, and 18 downregulated hallmark pathways were enriched. These GO terms and signalling pathways were closely related to cell proliferation, immunity, energy metabolism, and the inflammatory response of NSCLC. In addition, XHP's network pharmacology analysis identified 301 compounds and 1,432 target genes. A comprehensive strategic analysis identified CACNA1C as a promising gene by which XHP targets and regulates the TME of NSCLC, benefiting patient survival. CACNA1C expression was positively correlated with both the immune score and stromal score but negatively correlated with the tumour purity score. Additionally, CACNA1C expression was significantly correlated with the infiltration levels of 15 types of immune cells and the expression levels of 6 well-known checkpoint genes. CONCLUSIONS: Our results show that by regulating the pathways associated with cell proliferation and immunity, XHP can suppress cancer cell growth in NSCLC. Additionally, XHP may increase the expression of CACNA1C to suppress immune cell infiltration and regulate the expression of checkpoint-related genes, thereby improving the overall survival of NSCLC patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Mice , Animals , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Systems Biology , Mice, Nude , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Tumor Microenvironment
6.
Front Pharmacol ; 13: 857730, 2022.
Article in English | MEDLINE | ID: mdl-35721149

ABSTRACT

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the leading cause of coronavirus disease-2019 (COVID-19), is an emerging global health crisis. Lung cancer patients are at a higher risk of COVID-19 infection. With the increasing number of non-small-cell lung cancer (NSCLC) patients with COVID-19, there is an urgent need of efficacious drugs for the treatment of COVID-19/NSCLC. Methods: Based on a comprehensive bioinformatic and systemic biological analysis, this study investigated COVID-19/NSCLC interactional hub genes, detected common pathways and molecular biomarkers, and predicted potential agents for COVID-19 and NSCLC. Results: A total of 122 COVID-19/NSCLC interactional genes and 21 interactional hub genes were identified. The enrichment analysis indicated that COVID-19 and NSCLC shared common signaling pathways, including cell cycle, viral carcinogenesis, and p53 signaling pathway. In total, 10 important transcription factors (TFs) and 44 microRNAs (miRNAs) participated in regulations of 21 interactional hub genes. In addition, 23 potential candidates were predicted for the treatment of COVID-19 and NSCLC. Conclusion: This study increased our understanding of pathophysiology and screened potential drugs for COVID-19 and NSCLC.

7.
Article in English | MEDLINE | ID: mdl-34567213

ABSTRACT

BACKGROUND: Myelin and lymphocyte, T cell differentiation protein 2 (MAL2) is highly expressed in various cancers and associated with the development and prognosis of cancer. However, the relationship between MAL2 and breast cancer requires further investigation. This study aimed to explore the prognostic significance of MAL2 in breast cancer. METHODS: MAL2 expression was initially assessed using the Oncomine database and The Cancer Genome Atlas (TCGA) database and verified by quantitative real-time polymerase chain reaction (RT-qPCR). The chi-square test or Fisher's exact test was used to explore the association between clinical characteristics and MAL2 expression. The prognostic value of MAL2 in breast cancer was assessed by the Kaplan-Meier method and Cox regression analysis. Gene set enrichment analysis (GSEA) was performed to identify the biological pathways correlated with MAL2 expression in breast cancer. Besides, a single-sample GSEA (ssGSEA) was used to assess the relationship between the level of immune infiltration and MAL2 in breast cancer. RESULTS: Both bioinformatics and RT-qPCR results showed that MAL2 was expressed at high levels in breast cancer tissues compared with the adjacent tissues. The chi-square test or Fisher's exact test indicated that MAL2 expression was related to stage, M classification, and vital status. Kaplan-Meier curves implicated that high MAL2 expression was significantly associated with the poor prognosis. Cox regression models showed that high MAL2 expression could be an independent risk factor for breast cancer. GSEA showed that 14 signaling pathways were enriched in the high-MAL2-expression group. Besides, the MAL2 expression level negatively correlated with infiltrating levels of eosinophils and plasmacytoid dendritic cells in breast cancer. CONCLUSION: Overexpression of MAL2 correlates with poor prognosis and lower immune infiltrating levels of eosinophils and plasmacytoid dendritic cells in breast cancer and may become a biomarker for breast cancer prognosis.

8.
Mitochondrial DNA B Resour ; 6(3): 868-869, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33796661

ABSTRACT

The complete chloroplast genome of Quercus virginiana was sequenced with Illumina HiSeq 2000 platform. It was a typical quadruple structure as other plants of Quercus with 161,221 bp in length, including a large single-copy (LSC: 90,553 bp) region and a small single-copy (SSC: 19,016 bp) which were separated by a pair of inverted repeats (IRa, b: 25,826 bp) region. The overall GC content is 36.9%. A total of 131 genes was annotated which contained 86 protein-coding genes including the Trans splicing gene of rps12, 37 tRNA genes, and 8 rRNA genes. ML phylogenetic analysis compared with 17 expressed chloroplast genomes revealed that Q. virginiana was a sister to other species of Quercus, which were grouped together with five species of Section Quercus and another 12 species of Quercus were divided into another group.

9.
Biosci Rep ; 41(2)2021 02 26.
Article in English | MEDLINE | ID: mdl-33506873

ABSTRACT

BACKGROUND: Aidi injection (ADI) is an effective Traditional Chinese medicine preparation widely used for lung cancer. However, the pharmacological mechanisms of ADI on lung cancer remain to be elucidated. METHODS: A network pharmacology (NP)-based approach and the molecular docking validation were conducted to explore underlying mechanisms of ADI on lung cancer. The compounds and target genes were screened by Traditional Chinese Medicine Systems Pharmacology (TCMSP) database and Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine (Batman-TCM) database. The STRING database was utilized for protein interaction network construction. The R package clusterProfiler was used for bioinformatics annotation of hub target genes. The gene expression analysis and survival analysis were performed based on The Cancer Genome Atlas (TCGA) database. The Autodock Vina was used for molecular docking validation. RESULTS: A total of five key compounds with 324 putative target genes were screened out, and 14 hub target genes were identified for treating lung cancer. Six hub genes could influence the survival of non-small cell lung cancer (NSCLC) patients. Of these hub genes, the expression pattern of EGFR, MYC, PIK3CA, and SMAD3 were significantly higher in the LUSC, while PIK3CA and RELA expressed lower in the LUAD group and LUSC group, respectively. These six hub genes had good docking affinity with the key compounds of ADI. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that ADI may exert therapeutic effects on lung cancer by regulating critical pathways including the thyroid hormone signaling pathway, MAPK signaling pathway, and PI3K-Akt signaling pathway. CONCLUSIONS: The present study explored the potential pharmacological mechanisms of ADI on lung cancer, promoting the clinical application of ADI in treating lung cancer, and providing references for advanced researches.


Subject(s)
Carcinoma, Non-Small-Cell Lung/therapy , Lung Neoplasms/therapy , Medicine, Chinese Traditional , Carcinoma, Non-Small-Cell Lung/genetics , Computational Biology , Humans , Lung Neoplasms/genetics , Molecular Docking Simulation , Protein Interaction Maps
10.
Comb Chem High Throughput Screen ; 24(9): 1377-1394, 2021.
Article in English | MEDLINE | ID: mdl-33135607

ABSTRACT

OBJECTIVE: Shufeng Jiedu capsule (SFJDC) is a well-known Chinese patent drug that is recommended as a basic prescription and applied widely in the clinical treatment of COVID-19. However, the exact molecular mechanism of SFJDC remains unclear. The present study aims to determine the potential pharmacological mechanisms of SFJDC in the treatment of COVID-19 based on network pharmacology. METHODS: The network pharmacology-based strategy includes collection and analysis of active compounds and target genes, network construction, identification of key compounds and hub target genes, KEGG and GO enrichment, recognition and analysis of main modules, as well as molecule docking. RESULTS: A total of 214 active chemical compounds and 339 target genes of SFJDC were collected. Of note, 5 key compounds (ß -sitosterol, luteolin, kaempferol, quercetin, and stigmasterol) and 10 hub target genes (TP53, AKT1, NCOA1, EGFR, PRKCA, ANXA1, CTNNB1, NCOA2, RELA and FOS) were identified based on network analysis. The hub target genes mainly enriched in pathways including MAPK signaling pathway, PI3K-Akt signaling pathway and cAMP signaling pathway, which could be the underlying pharmacological mechanisms of SFJDC for treating COVID-19. Moreover, the key compounds had high binding activity with three typical target proteins including ACE2, 2OFZ, and 1SSK. CONCLUSION: By network pharmacology analysis, SFJDC was found to effectively improve immune function and reduce inflammatory responses based on its key compounds, hub target genes, and the relevant pathways. These findings may provide valuable evidence for explaining how SFJDC exerting the therapeutic effects on COVID-19, providing a holistic view for further clinical application.


Subject(s)
COVID-19 Drug Treatment , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Computer Simulation , Gene Regulatory Networks/drug effects , Gene Targeting , Humans , MAP Kinase Signaling System/drug effects , Medicine, Chinese Traditional , Molecular Docking Simulation , Protein Binding , SARS-CoV-2/chemistry , SARS-CoV-2/drug effects , Signal Transduction/drug effects
11.
PeerJ ; 9: e12506, 2021.
Article in English | MEDLINE | ID: mdl-34993016

ABSTRACT

BACKGROUND: Spindle and kinetochore associated complex subunit 3 (SKA3) plays an important role in tumorigenesis and the progression of various tumors. But the relationship between SKA3 and early breast cancer remains unclear. The study aimed to explore the prognostic significance of SKA3 in breast cancer. METHODS: In the study, SKA3 expression was initially assessed using the Oncomine database and The Cancer Genome Atlas database (TCGA). Then, we presented validation results for RT-qPCR (quantitative reverse transcription PCR) and ELISA (enzyme-linked immunosorbent assay). The relationship between clinical characteristics and SKA3 expression was assessed by Chi-square test and Fisher's exact test. Kaplan-Meier method and Cox regression analysis were conducted to evaluate the prognostic value of SKA3. Gene set enrichment analysis (GSEA) was performed to screen biological pathways using the TCGA dataset. Besides, single sample gene set enrichment analysis (ssGSEA) was utilized to identify immune infiltration cells about SKA3. RESULTS: SKA3 mRNA was expressed at high levels in breast cancer tissues compared with normal tissues. Chi-square test and Fisher's exact test showed SKA3 expression was related to age, tumor (T) classification, node (N) classification, tumor-node-metastasis (TNM) stage, estrogen receptor (ER), progesterone receptor (PR), molecular subtype, and race. RT-qPCR results showed that SKA3 expression was overexpressed in ER, PR status, and molecular subtype in Chinese people. Kaplan-Meier curves implicated that high SKA3 expression was related to a poor prognosis in female early breast cancer patients. Cox regression models showed that high SKA3 expression could be used as an independent risk factor for female early breast cancer. Four signaling pathways were enriched in the high SKA3 expression group, including mTORC1 signaling pathway, MYC targets v1, mitotic spindle, estrogen response early. Besides, the SKA3 expression level was associate with infiltrating levels of activated CD4 T cells and eosinophils in breast cancer. CONCLUSION: High SKA3 expression correlates with poor prognosis and immune infiltrates in breast cancer. SKA3 may become a biomarker for the prognosis of breast cancer.

12.
Onco Targets Ther ; 13: 7933-7939, 2020.
Article in English | MEDLINE | ID: mdl-32848419

ABSTRACT

EGFR-T790M and BRAFV600E are the common resistance mechanisms to EGFR-tyrosine kinase inhibitors (TKIs). Standard treatment for the triple mutations of EGFR-19del, T790M, and BRAFV600E is still under debate. Herein, we present a case of therapeutic efficacy of osimertinib and dabrafenib plus trametinib on a 63-year-old man with advanced lung adenocarcinoma. This patient reached a remarkable progression-free survival of 9 months without any serious adverse reaction. At the progression of the disease, C797S mutation in cis was detected by liquid biopsy. Subsequently, brigatinib with cetuximab was administered but no curative effect was observed. Then, therapy was changed to apatinib combined with osimertinib. The subsequent CT scan showed that the lesions reached stable disease (SD), and the survival benefit has been evaluated. This case showed that the combination treatment of osimertinib and dabrafenib plus trametinib might be a great treatment option for NSCLC patients with triple mutations (EGFR-19del/T790M/BRAFV600E).

13.
Article in English | MEDLINE | ID: mdl-32595734

ABSTRACT

BACKGROUND: HeChan tablet (HCT) is a traditional Chinese medicine preparation extensively prescribed to treat lung cancer in China. However, the pharmacological mechanisms of HCT on lung cancer remain to be elucidated. METHODS: A comprehensive network pharmacology-based strategy was conducted to explore underlying mechanisms of HCT on lung cancer. Putative targets and compounds of HCT were retrieved from TCMSP and BATMAN-TCM databases; related genes of lung cancer were retrieved from OMIM and DisGeNET databases; known therapeutic target genes of lung cancer were retrieved from TTD and DrugBank databases; PPI networks among target genes were constructed to filter hub genes by STRING. Furthermore, the pathway and GO enrichment analysis of hub genes was performed by clusterProfiler, and the clinical significance of hub genes was identified by The Cancer Genome Atlas. RESULT: A total of 206 compounds and 2,433 target genes of HCT were obtained. 5,317 related genes of lung cancer and 77 known therapeutic target genes of lung cancer were identified. 507 unique target genes were identified among HCT-related genes of lung cancer and 34 unique target genes were identified among HCT-known therapeutic target genes of lung cancer. By PPI networks, 11 target genes AKT1, TP53, MAPK8, JUN, EGFR, TNF, INS, IL-6, MYC, VEGFA, and MAPK1 were identified as major hub genes. IL-6, JUN, EGFR, and MYC were shown to associate with the survival of lung cancer patients. Five compounds of HCT, quercetin, luteolin, kaempferol, beta-sitosterol, and baicalein were recognized as key compounds of HCT on lung cancer. The gene enrichment analysis implied that HCT probably benefitted patients with lung cancer by modulating the MAPK and PI3K-Akt pathways. CONCLUSION: This study predicted pharmacological and molecular mechanisms of HCT against lung cancer and could pave the way for further experimental research and clinical application of HCT.

14.
Eur J Integr Med ; 37: 101139, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32501408

ABSTRACT

INTRODUCTION: Shuanghuanglian (SHL) oral liquid is a well-known traditional Chinese medicine preparation administered for respiratory tract infections in China. However, the underlying pharmacological mechanisms remain unclear. The present study aims to determine the potential pharmacological mechanisms of SHL oral liquid based on network pharmacology. METHODS: Network pharmacology-based strategy including collection and analysis of putative compounds and target genes, network construction, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and Gene Ontology (GO) enrichment, identification of key compounds and target genes, and molecule docking was performed in this study. RESULTS: A total of 82 bioactive compounds and 226 putative target genes of SHL oral liquid were collected. Of note, 28 hub target genes including 4 major hub target genes: estrogen receptor 1 (ESR1), nuclear receptor coactivator 2 (NCOA2), nuclear receptor coactivator 1 (NCOA1), androgen receptor (AR) and 5 key compounds (quercetin, luteolin, baicalein, kaempferol and wogonin) were identified based on network analysis. The hub target genes mainly enriched in pathways including PI3K-Akt signaling pathway, human cytomegalovirus infection, and human papillomavirus infection, which could be the underlying pharmacological mechanisms of SHL oral liquid for treating diseases. Moreover, the key compounds had great molecule docking binding affinity with the major hub target genes. CONCLUSION: Using network pharmacology analysis, SHL oral liquid was found to contain anti-virus, anti-inflammatory, and "multi-compounds and multi-targets" with therapeutic actions. These findings may provide a valuable direction for further clinical application and research.

15.
Biochim Biophys Acta Mol Basis Dis ; 1866(10): 165842, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32446740

ABSTRACT

Wilson's disease is an autosomal recessive disease characterized by excess copper accumulated in the liver and brain. It is caused by mutations in the copper transporter gene ATP7B. However, based on the poor understanding of the transcriptional program involved in the pathogenesis of Wilson's disease and the lack of more safe and efficient therapies, the identification of novel pathways and the establishment of complementary model systems of Wilson's disease are urgently needed. Herein, we generated two zebrafish atp7b-mutant lines using the CRISPR/Cas9 editing system, and the mutants developed hepatic and behavioral deficits similar to those observed in humans with Wilson's disease. Interestingly, we found that atp7b-deficient zebrafish embryos developed liver steatosis under low-dose Cu exposure, and behavioral deficits appeared under high-dose Cu exposure. Analyses of publicly available transcriptomic data from ATP7B-knockout HepG2 cells demonstrated that the HIF-1 signaling pathway is downregulated in ATP7B-knockout HepG2 cells compared with wildtype cells following Cu exposure. The HIF-1 signaling pathway was also downregulated in our atp7b-deficient zebrafish mutants following Cu exposure. Furthermore, we demonstrate that activation of the HIF-1 signaling pathway with the chemical compound FG-4592 or DMOG ameliorates liver steatosis and reduces accumulated Cu levels in zebrafish atp7b deficiency models. These findings introduce a novel prospect that modulation of the HIF-1 signaling pathway should be explored as a novel strategy to reduce copper toxicity in Wilson's disease patients.


Subject(s)
Copper-Transporting ATPases/genetics , Fatty Liver/metabolism , Hepatolenticular Degeneration/genetics , Hepatolenticular Degeneration/metabolism , Hypoxia-Inducible Factor 1/metabolism , Liver/metabolism , Signal Transduction/physiology , Zebrafish Proteins/genetics , Animals , CRISPR-Cas Systems , Copper/metabolism , Copper/toxicity , Disease Models, Animal , Fatty Liver/genetics , Fatty Liver/pathology , Female , Gene Knockout Techniques , Hep G2 Cells , Hepatocytes/metabolism , Humans , Liver/pathology , Male , Mutation , Zebrafish
16.
Mitochondrial DNA B Resour ; 5(3): 2760-2762, 2020 Jul 11.
Article in English | MEDLINE | ID: mdl-33457939

ABSTRACT

The complete chloroplast genome of Catalpa 'Bairihua' a hybrid variety with multi season flowering obtained from hybrid progeny of C. bungei 'Luoqiu Sihao' (C. bungei '01' × C. bungei 'Changguo Qiu') and C. fargesii f. duclouxii was first sequenced with the Illumina HiSeq 2000 platform. Which was 158,210 bp in length with a typical quadruple structure and contained a large single copy (LSC: 84,928 bp) region and a small single copy (SSC: 12,664 bp) region that were separated by a pair of inverted repeats (IRa, b: 30,309 bp) region. The GC content of the whole chloroplast genome is 38.1%. A total of 130 genes was annotated in the complete chloroplast genome, including 85 protein-coding genes, 37 tRNA genes and 8rRNA genes. ML phylogenetic analysis by comparing with 39 chloroplast genomes of the Bignoniaceae indicated that Catalpa 'Bairihua' was close to Tecomaria capensis.

17.
Ann Hepatol ; 19(3): 313-319, 2020.
Article in English | MEDLINE | ID: mdl-31870745

ABSTRACT

INTRODUCTION AND OBJECTIVES: Hepatitis B virus (HBV) might be an etiological factor modulating fat distribution in steatotic livers. We aim to compare hepatic steatosis distribution patterns between NAFLD and FL&CHB patients with second-harmonic generation (SHG)/two-photon excited fluorescence (TPEF) method. PATIENTS AND METHODS: 42 patients with NAFLD, 46 with FL&CHB and 55 without steatosis were enrolled in the study. Overall and regional steatosis in liver sections were quantified by SHG/TPEF method. The accuracy of which was validated by pathologist evaluation and magnetic resonance spectroscopy (MRS). Difference in degree of overall and regional steatosis between NAFLD and FL&CHB groups was analyzed by Mann-Whitney U test. Multivariable linear regression analysis was used to model factors contributing to steatosis distribution. RESULTS: The hepatic steatosis measured by SHG/TPEF method was highly correlated with pathologist grading (r=0.83, p<0.001) and MRS measurement (r=0.82, p<0.001). The level of overall steatosis in FL&CHB group is significantly lower than that in NAFLD group (p<0.001). In NAFLD group, periportal region has significantly lower steatosis percentage than lobule region and overall region (p<0.001); while in FL&CHB group there is no difference among regions. The ratio of steatosis at periportal region to lobule region is significantly higher in FL&CHB group than that in NAFLD group (p<0.05). Multivariable linear regression analysis shows that HBV infection is the major contributing factor (ß=0.322, p<0.01). CONCLUSIONS: SHG/TPEF method is an accurate and objective method in hepatic steatosis quantification. By quantifying steatosis in different histological regions, we found steatosis distribution patterns are different between FL&CHB and NAFLD patients.


Subject(s)
Fatty Liver/pathology , Hepatitis B, Chronic/pathology , Liver/pathology , Non-alcoholic Fatty Liver Disease/pathology , Adult , Case-Control Studies , Female , Humans , Male , Microscopy, Fluorescence, Multiphoton , Middle Aged , Second Harmonic Generation Microscopy
18.
Medicine (Baltimore) ; 98(38): e16983, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31567934

ABSTRACT

RATIONALE: Fu's subcutaneous needling (FSN) is an innovative therapy of traditional acupuncture. FSN has been widely applied for the treatment of pain symptoms by relieving local muscle tension and promoting local blood circulation. Varicocele (VCL) is a disease that commonly occurs in male adolescents. Patients with VCL can suffer from pain in the scrotum, inguinal area, or unilateral testis, which could be an indication for FSN. In this study, we present a unique case, in which a 30-year-old male patient with VCL benefitted from FSN. PATIENT CONCERNS: A 30-year-old male complained of dull pain and swelling in the testicular area for 4 months. No significant abnormalities were identified in his genitalia by physical examination. DIAGNOSES: The patient was diagnosed with VCL, with his symptoms and signs of dull pain and swelling in the testicular area, and ultrasound also demonstrated the left-side VCL. INTERVENTIONS: FSN was performed successfully twice a week on a different day without postoperative complications. The total course lasted 8 weeks. OUTCOMES: The patient experienced obvious relief of his testicular pain and swelling after each treatment course. All his symptoms resolved and disappeared after 4 treatment courses. After the 8-week treatment course, the color ultrasound after treatment demonstrated improved anastomotic blood flow rates in his left spermatic vein. No narrow or thrombotic parts were observed post-treatment compared to the color ultrasound before treatment. The patient was followed up at 1, 3, and 6 months after treatment. During the follow-up period, his previous symptoms disappeared without recurrence. LESSONS: FSN significantly improved the patent's symptoms of testicular pain and abnormal dilatation and tortuosity of the spermatic veins. FSN might exert its therapeutic effect by improving the relaxation of muscle oppression and increasing the local blood reperfusion to resume blood stream. Due to the limitation of a single clinical observation case, a randomized clinical trial with a sufficient follow-up time is needed.


Subject(s)
Acupuncture Therapy , Varicocele/therapy , Adult , Humans , Male , Subcutaneous Tissue
19.
Am J Transl Res ; 11(5): 2668-2682, 2019.
Article in English | MEDLINE | ID: mdl-31217846

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most malignant and poor prognosis tumors, which was increasingly caused by nonalcoholic fatty liver disease/nonalcoholic steatohepatitis (NAFLD/NASH) in western countries. In this study, we aimed to investigate the mechanism and therapeutic prospect of berberine in the treatment of NASH-HCC mice. Combination of STZ injection and high fat and high-cholesterol diet (HFHC) was used to establish NASH-HCC model. The effect of berberine intervention is studied from histology, biochemistry and molecular level. Our results showed that administration of berberine to NASH-HCC mice reduced the incidence of tumors and mitigated NASH. Berberine significantly reduced the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), glucose (GLU), high-density lipoprotein (HDL), low-density lipoprotein (LDL) and total cholesterol (TC). Transcriptome sequencing and bioinformatics analysis identified numberous genes and various pathways may participate in the favorite effect of berberine. Specifically, berberine suppressed the expressions of genes related to lipogenesis, inflammation, fibrosis and angiogenesis. Moreover, our results showed that berberine suppressed phosphorylation of p38MAPK and ERK as well as COX2 expression significantly. This suggested berberine achieved its biological functions mainly by regulating inflammation and angiogenesis genes involving p38MAPK/ERK-COX2 pathways. This study demonstrated the anti-tumor effects of berberine and its possible mechanism, providing a potential drug for treating NASH-HCC.

20.
Medicine (Baltimore) ; 97(51): e13599, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30572466

ABSTRACT

BACKGROUND: Coronary heart disease (CHD) is a major cause of mortality worldwide. Shen-Song-Yang-Xin capsule (SSYXC) has received extensive attention as an alternative therapy in improving myocardial ischemia and hypoxia effectively. In addition, there has been no systematic review or meta-analysis of SSYXC in the treatment of the elderly patients with cardiac arrhythmias in coronary heart disease (CHD). Therefore, we carry out a protocol of a proposed study based on the referred Reporting Items for Systematic Reviews and Meta-Analyses guidelines that aims to systematically evaluate the efficacy and safety of SSYXC in the elderly patients with cardiac arrhythmias in CHD. METHODS: Two researchers will search 9 electronic databases (PubMed, Medline, Embase, Cochrane Library, Web of Science, China National Knowledge Infrastructure, Chinese VIP Information, Wanfang Database, and Chinese Biomedical Database) to identify all studies that meet the inclusion criteria and were published before October 2018. The literature selection process will be reported in accordance with the PRISMA guidelines. After information extraction and methodological quality evaluation, we will use Stata 12.0 software (STATA Corporation, College Station, TX) to synthesize the data. The primary outcomes will include effective rates of treatment and improvements of electrocardiogram or 24 hours dynamic electrocardiogram result, and secondary outcomes will include improvement of relevant serological indexes, heart function classification and adverse events. RESULTS: The data synthesis results will objectively illustrate the efficacy and safety of SSYXC in the elderly patients with cardiac arrhythmias in CHD. CONCULSION: The findings will provide a reference for the use of SSYXC in the treatment of the elderly patients with cardiac arrhythmias in CHD. REGISTRATION: PROS-PERO CRD42018112570.


Subject(s)
Arrhythmias, Cardiac/drug therapy , Coronary Disease/complications , Drugs, Chinese Herbal/administration & dosage , Meta-Analysis as Topic , Systematic Reviews as Topic , Aged , Aged, 80 and over , Arrhythmias, Cardiac/etiology , Capsules , Female , Humans , Male , Research Design , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...