Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Fish Biol ; 94(2): 223-230, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30565702

ABSTRACT

This study provides a comprehensive description of chondrocranial development before, during and after larval metamorphosis in the tongue sole Cynoglossus semilaevis, a commercially valuable flatfish in China. Samples were collected at regular intervals ranging from 1 to 23 days post hatching (dph). Based on observations of cleared and double-stained specimens and images from sections stained with safranin O-fast green, major morphological events during early development were described. No cartilaginous structure was visible at hatching. From 2 dph onwards, cartilaginous structures such as the trabecular bar and some elements of the mandibular, hyoid and branchial arches appeared. At this time also, cartilaginous structures of the neurocranium started to form. Hypertrophic chondrocytes could be observed in many splanchnocranium elements at 5 dph. The start of ossification was indicated by alizarin red stain visible at 14 dph. At 17 dph, most of the cartilaginous skeleton was ossified. Soon after, the right eye started to migrate and pass through a slit beneath the dorsal-fin base and above the skull. Metamorphosis was complete at 20 dph, at which time the dorsal-fin base cartilage extended onto the anterior region of the head. Meanwhile, extremities of the hyoid and branchial arch elements remained cartilaginous. At 23 dph, endochondral ossification of the splanchnocranium was nearly complete. Unlike previous observations of other Pleuronectiformes, our study indicates that endochondral ossification of C. semilaevis skull cartilage occurs before metamorphosis.


Subject(s)
Cartilage/growth & development , Flounder/growth & development , Metamorphosis, Biological , Skull/growth & development , Animals , Branchial Region/growth & development , China , Flatfishes , Flounder/anatomy & histology , Mandible/growth & development , Osteogenesis
2.
Glob Chang Biol ; 23(11): 4828-4839, 2017 11.
Article in English | MEDLINE | ID: mdl-28346724

ABSTRACT

Macroalgae contribute approximately 15% of the primary productivity in coastal marine ecosystems, fix up to 27.4 Tg of carbon per year, and provide important structural components for life in coastal waters. Despite this ecological and commercial importance, direct measurements and comparisons of the short-term responses to elevated pCO2 in seaweeds with different life-history strategies are scarce. Here, we cultured several seaweed species (bloom forming/nonbloom forming/perennial/annual) in the laboratory, in tanks in an indoor mesocosm facility, and in coastal mesocosms under pCO2 levels ranging from 400 to 2,000 µatm. We find that, across all scales of the experimental setup, ephemeral species of the genus Ulva increase their photosynthesis and growth rates in response to elevated pCO2 the most, whereas longer-lived perennial species show a smaller increase or a decrease. These differences in short-term growth and photosynthesis rates are likely to give bloom-forming green seaweeds a competitive advantage in mixed communities, and our results thus suggest that coastal seaweed assemblages in eutrophic waters may undergo an initial shift toward communities dominated by bloom-forming, short-lived seaweeds.


Subject(s)
Acclimatization , Carbon Dioxide/metabolism , Life History Traits , Photosynthesis , Seaweed/physiology , Eutrophication , Seaweed/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...