Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Kaohsiung J Med Sci ; 39(12): 1166-1177, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37916731

ABSTRACT

Lung cancer (LCa), the most frequent malignancy worldwide, causes millions of mortalities each year. Overexpression of the long noncoding RNA MIR210HG in LCa has been established; however, a more comprehensive investigation into its biological role within LCa is imperative. This study aimed to validate the MIR210H levels in LCa tissues and cells. The expression of indicated genes was evaluated using quantitative real-time polymerase chain reaction (qRT-PCR) and/or Western blotting. The viability, proliferation, migration, and invasion of LCa cells were measured using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), colony formation, wound healing, and transwell assays, respectively. The methylation levels of LCa cells were determined via methylation-specific PCR; additionally, chromatin immunoprecipitation or RNA immunoprecipitation assays were performed to determine the targeting relationship between DNA methyltransferase 1 (DNMT1) and the SH3-domain containing CRB2 like 3 (SH3GL3) promoters and the interaction between DNMT1 and MIR210HG, respectively. Our findings revealed the upregulation of MIR210HG, coupled with a diminished expression of SH3GL3 in LCa tissues and cells. Knockdown of MIR210HG or overexpression of SH3GL3 suppressed the proliferative, migratory, and invasive capacities of the cells. DNMT1 bound to the SH3GL3 promoter region, and MIR210HG inhibited the transcription of SH3GL3 by recruiting DNMT1. These findings indicate that MIR210HG facilitates LCa cell growth and metastasis by repressing SH3GL3 transcription via the recruitment of DNMT1 to the SH3GL3 promoter region.


Subject(s)
Lung Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , MicroRNAs/metabolism , Adaptor Proteins, Signal Transducing/metabolism
2.
Autoimmunity ; 55(5): 318-327, 2022 08.
Article in English | MEDLINE | ID: mdl-35656971

ABSTRACT

Acute lung injury (ALI) is a common, variously induced lung cell injury with high mortality. It is also an early stage of acute respiratory distress syndrome. BML-111 is a lipoxin A4 receptor agonist that plays an important role in inflammation. However, its function on ALI remains unclear. To explore whether BML-111 is involved in ALI and its regulatory molecular mechanism, we constructed an in vitro ALI model by stimulating primary mouse alveolar epithelial cells (AECs) with lipopolysaccharide (LPS). The downstream target of microRNA (miR)-494 was predicted by Targetscan. The apoptosis and expression of inflammatory cytokines were analysed by RT-qPCR, Western blot, and ELISA. BML-111 treatment alleviated LPS-induced apoptosis and the production of inflammatory cytokines, such as tumour necrosis factor α, interleukin (IL)-6, IL-1ß, in primary mouse AECs via downregulating miR-494. MiR-494 targeted and downregulated slit guidance ligand 2 (Slit2) in primary mouse AECs. BML-111 activated the Slit2/roundabout guidance receptor 4 (Robo4) axis via downregulating miR-494 to reduce LPS-induced damage in AECs. This study elucidated that miR-494 on BML-111 alleviated LPS-induced ALI in primary mouse AECs via downregulating miR-494 and subsequently activating the Slit2/Robo4 axis. These findings provided a new idea for the prevention and treatment of ALI and respiratory distress syndrome.


Subject(s)
Acute Lung Injury , MicroRNAs , Acute Lung Injury/chemically induced , Acute Lung Injury/genetics , Acute Lung Injury/metabolism , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Animals , Cytokines/metabolism , Heptanoic Acids , Interleukin-6/genetics , Interleukin-6/metabolism , Lipopolysaccharides/adverse effects , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Receptors, Cell Surface
SELECTION OF CITATIONS
SEARCH DETAIL
...