Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Cells ; 10(12)2021 12 09.
Article in English | MEDLINE | ID: mdl-34943988

ABSTRACT

Obesity is associated with chronic low-grade inflammation. The benefits of exercise are partly attributed to its anti-inflammatory effect, but whether exercise can regulate NLRP3 inflammasome activation in obese adipose tissue remains unknown. Meteorin-like (METRNL), a recently discovered myokine, has been implicated in mediating the effect of exercise on metabolism. Herein, we examined the effect of exercise and METRNL on NLRP3 inflammasome activation. High-fat diet (HFD)-induced obese mice were subjected to treadmill exercise for 8 weeks. A subgroup of HFD mice was switched to normal chow with the exercise intervention. Exercise and diet attenuated weight gain, fat accumulation, and insulin resistance in obese mice. In addition, exercise downregulated gene and protein levels of inflammasome markers, including NLRP3 and caspase-1, in adipose tissue. In isolated bone marrow-derived macrophages, activation of NLRP3 inflammasome was suppressed in the exercise group, as confirmed by the downregulation of IL-1ß and IL-18. Exercise significantly enhanced the expression of METRNL in various muscle depots, and further in vitro analysis revealed that recombinant METRNL treatment inhibited IL-1ß secretion in macrophages. In conclusion, exercise exerts its anti-inflammatory action by suppressing adipose tissue NLRP3 inflammasome, and this is, in part, associated with METRNL induction in muscle and its anti-inflammatory effects in macrophages.


Subject(s)
Inflammation/therapy , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Nerve Growth Factors/genetics , Obesity/therapy , Animals , Diet, High-Fat/adverse effects , Exercise Therapy , Humans , Inflammasomes/genetics , Inflammasomes/metabolism , Inflammation/genetics , Inflammation/pathology , Insulin Resistance/genetics , Macrophages/metabolism , Macrophages/pathology , Mice , Mice, Obese/genetics , Obesity/genetics , Obesity/pathology , Physical Conditioning, Animal
2.
Front Pharmacol ; 12: 648708, 2021.
Article in English | MEDLINE | ID: mdl-34295244

ABSTRACT

Hepatocellular carcinoma is a malignant tumor with high morbidity and mortality, a highly effective treatment with low side effects and tolerance is needed. Photothermal immunotherapy is a promising treatment combining photothermal therapy (PTT) and immunotherapy. PTT induces the release of tumor-associated antigens by ablating tumor and Ganoderma lucidum polysaccharides (GLP) enhance the antitumor immunity. Results showed that Indocyanine Green (ICG) was successfully encapsulated into SF-Gel. ICG could convert light to heat and SF-Gel accelerates the photothermal effect in vitro and in vivo. PTT based on ICG/ICG-SF-Gel inhibited the growth of primary and distal tumors, GLP enhanced the inhibitory efficacy. ICG/ICG-SF-Gel-based PTT and GLP immunotherapy improved the survival time. ICG/ICG-SF-Gel-based PTT induces tumor necrosis and GLP enhanced the photothermal efficacy. ICG/ICG-SF-Gel-based PTT inhibited cell proliferation and angiogenesis, induced cell apoptosis, enhanced cellular immunity, and GLP enhanced these effects. In conclusion, GLP could enhance the abscopal effect of PTT in Hepatoma-bearing mice.

3.
Acta Biomater ; 122: 111-132, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33444802

ABSTRACT

Diabetic nephropathy (DN) is one of the most serious complications of diabetes mellitus. The combination of insulin (Ins) with liraglutide (Lir) has a greater potential for preventing DN than monotherapy. However, the renal protective effect of the combined Ins/Lir therapy is largely compromised due to their short half-lives after subcutaneous injection. Herein, a glucose-responsive hydrogel was designed in situ forming the dynamic boronic esters bonds between phenylboronic acid-grafted γ-Polyglutamic acid (PBA-PGA) and konjac glucomannan (KGM). It was hypothesized that the KGM/PBA-PGA hydrogel as the delivery vehicle of Ins/Lir would enhance the combinational effect of the latter on preventing the DN progress. Scan electronic microscopy and rheological studies showed that KGM/PBA-PGA hydrogel displayed good glucose-responsive property. Besides, the glucose-sensitive release profile of either Ins or Lir from KGM/PBA-PGA hydrogel was uniformly displayed at hyperglycemic level. Furthermore, the preventive efficacy of KGM/PBA-PGA hydrogel incorporating insulin and liraglutide (Ins/Lir-H) on DN progress was evaluated on streptozotocin-induced rats with diabetic mellitus (DM). At 6 weeks after subcutaneous injection of Ins/Lir-H, not only the morphology of kidneys was obviously recovered as shown by ultrasonography, but also the renal hemodynamics was significantly improved. Meanwhile, the 24-h urinary protein and albumin/creatinine ratio were well modulated. Inflammation and fibrosis were also largely inhibited. Besides, the glomerular NPHS-2 was obviously elevated after treatment with Ins/Lir-H. The therapeutic mechanism of Ins/Lir-H was highly associated with the alleviation of oxidative stress and activation of autophagy. Conclusively, the better preventive effect of the combined Ins/Lir via KGM/PBA-PGA hydrogel on DN progress was demonstrated as compared with their mixed solution, suggesting KGM/PBA-PGA hydrogel might be a potential vehicle of Ins/Lir to combat the progression of DN.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Animals , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/prevention & control , Glucose , Hydrogels/pharmacology , Insulin/pharmacology , Liraglutide/pharmacology , Liraglutide/therapeutic use , Rats
4.
Arch Pharm Res ; 43(12): 1311-1324, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33245516

ABSTRACT

Chronic inflammation in adipose tissue is the hallmark of obesity and a major risk factor for the development of obesity-induced insulin resistance. NLRP3 inflammasome regulates the maturation and secretion of pro-inflammatory cytokines, such as IL-1ß and IL-18, and was recently discovered to be involved in obesity-related metabolic diseases. Fibroblast growth factors (FGFs) such as FGF1, FGF10, and FGF21 are adipokines that regulate adipocyte development and metabolism, but reports on the effect of other FGFs on adipocytes are lacking. In the present study, the novel role of FGF2 in NLRP3 inflammasome activation was elucidated. Our results showed that FGF2 levels were increased during adipocyte differentiation and in the adipose tissue of high-fat diet (HFD)-induced obese mice. Recombinant FGF2 treatment upregulated inflammasome markers such as NLRP3, which was further exaggerated by TNF-ɑ treatment. Interestingly, ß-Klotho, a co-receptor of FGF21, was significantly decreased by FGF2 treatment. Results from mice confirmed the positive correlation between FGF2 and NLRP3 expression in epididymal and subcutaneous adipose tissue, while exercise training effectively reversed HFD-induced NLRP3 expression as well as FGF2 levels in both adipose depots. Our results suggest that FGF2 is an adipokine that may exacerbate the inflammatory response in adipocytes through NLRP3 inflammasome activation.


Subject(s)
Adipocytes/drug effects , Adipogenesis/drug effects , Fibroblast Growth Factor 2/pharmacology , Inflammasomes/metabolism , Inflammation/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Obesity/metabolism , Subcutaneous Fat/drug effects , 3T3-L1 Cells , Adipocytes/immunology , Adipocytes/metabolism , Animals , Disease Models, Animal , Fibroblast Growth Factor 2/genetics , Fibroblast Growth Factor 2/metabolism , Inflammation/genetics , Inflammation/immunology , Klotho Proteins , Male , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Obesity/genetics , Obesity/immunology , Receptor, Fibroblast Growth Factor, Type 1/agonists , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Receptor, Fibroblast Growth Factor, Type 2/agonists , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Signal Transduction , Subcutaneous Fat/immunology , Subcutaneous Fat/metabolism , Tumor Necrosis Factor-alpha/pharmacology
5.
Artif Cells Nanomed Biotechnol ; 47(1): 4293-4304, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31810396

ABSTRACT

Instability of silk fibroin nanoparticles (SFNPs) in physiologic condition hinders its application as drug delivery vehicle. Herein, indocyanine green (ICG) loaded silk fibroin nanoparticles (ICG-SFNPs) was firstly prepared and then crosslinked by proanthocyanidins to obtain the stable ICG-CSFNPs for killing the residual tumour niche under near infra-red irradiation (NIR) after surgery. The particle size and zeta potentials of ICG-CSFNPs was 120.1 nm and -40.4 mV, respectively. Moreover, ICG-CSFNPs exhibited good stability of particle size in the physiological medium. Meanwhile, the stable photothermal properties of ICG-CSFNPs were not compromised even after several cycles of NIR. Few of the ICG-CSFNPs were phagocytized by RAW264.7 macrophage in vitro, while they were easily internalized by C6 glioma cells, resulting in their significant toxicity on tumour cells after NIR. The pharmacokinetic study showed that ICG-CSFNPs had a longer blood circulation time than ICG-SFNPs, making them more distribution in glioma after intravenous administration in vivo. Meanwhile, the pharmacological study showed the more effective inhibition of tumour growth was exhibited by ICG-CSFNPs in C6 glioma-bearing mice after NIR. Overall, the cross-linked nanoparticles of silk fibroin may be a promising vehicle of ICG for photothermal therapy of glioma after surgical resection.


Subject(s)
Fibroins/chemistry , Glioma/therapy , Indocyanine Green/chemistry , Indocyanine Green/therapeutic use , Nanoparticles/chemistry , Phototherapy , Proanthocyanidins/chemistry , Animals , Cell Line, Tumor , Drug Carriers/chemistry , Drug Liberation , Glioma/diagnostic imaging , Glioma/pathology , Indocyanine Green/pharmacokinetics , Infrared Rays/therapeutic use , Male , Mice , Optical Imaging , Rats , Tissue Distribution
6.
J Control Release ; 299: 90-106, 2019 04 10.
Article in English | MEDLINE | ID: mdl-30807805

ABSTRACT

Keratinocyte growth factor (KGF) was effective to treat ulcerative colitis. However, its poor stability and unspecific distribution toward inflamed bowel were two important obstacles hindering its consistent efficacy. Herein, KGF was firstly encapsulated into the liposomes (KGF-Lips) to improve its stability. Thereafter, the neutrophil membrane vesicle (NEM) was extracted from the activated neutrophil which was isolated from the healthy mice and then activated by lipopolysaccharide. Subsequently, NEM was inlaid in KGF-Lips to construct a neutrophil-like liposome (KGF-Neus). KGF was easily encapsulated into KGF-Neus with a high encapsulation efficiency of 95.3 ±â€¯0.72%. Controlling NEM/lipid ratio at 1:50, KGF-Neus displayed the spherical morphology with Dh of 154.8 ±â€¯2.7 nm, PDI of 0.18, and zeta potential of -2.37 ±â€¯0.14 mV. Moreover, KGF-Neus exhibited good stability of Dh and significantly improved the chemical stability of KGF. Owing to NEM-associated proteins, KGF-Neus were specifically internalized by the inflammatory HUVECs. Moreover, KGF-Neus were specifically homed to the inflamed bowel in dextran sulfate sodium-induced mice after intravenous injection, resulting in the effective recovery of the morphology and function of the bowel. The therapeutic mechanisms of KGF-Neus were highly associated with alleviation of inflammation in colitis. Overall, the neutrophil-like liposome may be an excellent carrier for the colitis-targeted delivery of KGF.


Subject(s)
Colitis, Ulcerative/drug therapy , Colon/drug effects , Fibroblast Growth Factor 7/administration & dosage , Animals , Colitis, Ulcerative/pathology , Colon/pathology , Drug Delivery Systems , Fibroblast Growth Factor 7/pharmacokinetics , Fibroblast Growth Factor 7/therapeutic use , Humans , Inflammation/drug therapy , Inflammation/pathology , Liposomes , Male , Mice, Inbred ICR , Neutrophils/drug effects , Neutrophils/pathology
7.
Drug Deliv ; 25(1): 1302-1318, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29869524

ABSTRACT

Currently, combination drug therapy is one of the most effective approaches to glioma treatment. However, due to the inherent dissimilar pharmacokinetics of individual drugs and blood brain barriers, it was difficult for the concomitant drugs to simultaneously be delivered to glioma in an optimal dose ratio manner. Herein, a cationic micellar core (Cur-M) was first prepared from d-α-tocopherol-grafted-ε-polylysine polymer to encapsulate the hydrophobic curcumin, followed by dopamine-modified-poly-γ-glutamic acid polymer further deposited on its surface as a anion shell through pH-sensitive linkage to encapsulate the hydrophilic doxorubicin (DOX) hydrochloride. By controlling the combinational Cur/DOX molar ratio at 3:1, a pH-sensitive core-shell nanoparticle (PDCP-NP) was constructed to simultaneously target the cancer stem cells (CSCs) and the differentiated tumor cells. PDCP-NP exhibited a dynamic diameter of 160.8 nm and a zeta-potential of -30.5 mV, while its core-shell structure was further confirmed by XPS and TEM. The ratiometric delivery capability of PDCP-NP was confirmed by in vitro and in vivo studies, in comparison with the cocktail Cur/DOX solution. Meanwhile, the percentage of CSCs in tumors was significantly decreased from 4.16% to 0.95% after treatment with PDCP-NP. Overall, PDCP-NP may be a promising carrier for the combination therapy with drug candidates having dissimilar physicochemical properties.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/chemistry , Glioma/drug therapy , Nanoparticles/chemistry , Animals , Cell Line, Tumor , Curcumin/administration & dosage , Curcumin/chemistry , Doxorubicin/administration & dosage , Doxorubicin/chemistry , Drug Carriers/chemistry , Drug Delivery Systems/methods , Glutamic Acid/chemistry , Humans , Hydrogen-Ion Concentration , Male , Micelles , Neoplastic Stem Cells/drug effects , Polylysine/chemistry , Polymers/chemistry , Rats , Rats, Sprague-Dawley , alpha-Tocopherol/chemistry
8.
Artif Cells Nanomed Biotechnol ; 46(sup2): 373-385, 2018.
Article in English | MEDLINE | ID: mdl-29653493

ABSTRACT

Basic fibroblast growth factor (bFGF) has shown great therapeutic effects for diabetic nephropathy (DN). However, its clinical applications are limited due to its short half-life, low stability and poor penetration. Herein, a bFGF-loaded liposome (bFGF-lip) was constructed and combined with ultrasound-targeted microbubble destruction (UTMD) to overcome these drawbacks. bFGF-lip exhibited spherical morphology with a diameter of 171.1 ± 14.2 nm and a negative zeta potential of -5.15 ± 2.08 mV, exhibiting a sustained-release profile of bFGF. DN rat models were successfully induced by streptozotocin. After treatment with bFGF-lip + UTMD, the concentration of bFGF in kidney of DN rats was significantly enhanced in comparison with free bFGF treatment. Additionally, the morphology and the function of the kidneys were obviously recovered after bFGF-lip + UTMD treatment as shown by ultrasonography and histological analyse. The molecular mechanism was associated with the inhibition of renal inflammation. After treatment with bFGF-lip + UTMD, the activation of NF-κB was obviously reduced in the renal tissues, and downstream inflammatory mediators including TGF-ß1, MCP-1, IL-6 and IL-1ß were also down regulated. In addition, inflammation-induced cellular apoptosis of renal tubular cells was also significantly inhibited by detecting Bax, caspase-3 and Bcl-2. Therefore, bFGF-lip in combination with UTMD might be a potential strategy to reverse the progression of early DN.


Subject(s)
Diabetic Nephropathies/prevention & control , Fibroblast Growth Factor 2/administration & dosage , Fibroblast Growth Factor 2/pharmacology , Kidney/metabolism , Microbubbles , Ultrasonic Waves , Animals , Caspase 3/metabolism , Chemokine CCL2/metabolism , Diabetic Nephropathies/metabolism , Fibroblast Growth Factor 2/metabolism , Gene Expression Regulation, Enzymologic/drug effects , Inflammation/drug therapy , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Liposomes , Male , Membrane Proteins/metabolism , NF-kappa B/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Rats , Rats, Sprague-Dawley , Transforming Growth Factor beta1/metabolism , bcl-2-Associated X Protein/metabolism
9.
Oncotarget ; 9(14): 11767-11782, 2018 Feb 20.
Article in English | MEDLINE | ID: mdl-29589596

ABSTRACT

Nephropathy is one of the most severe complications of diabetic patients. The therapeutic strategies for diabetic patients should not only focus on the control of blood glucose but also pay attention to the occurrence of diabetic nephropathy (DN). Coenzyme Q10 (CoQ10) has great therapeutic potential for DN. However, the clinical application of CoQ10 has been limited because of its low water-solubility and non-specific distribution. Liposomes were supposed to be an effective way for delivering CoQ10 to kidney. CoQ10 was effectively encapsulated into the liposome (CoQ10-LIP) with a high entrapment efficiency of 86.15 %. The CoQ10-LIP exhibited a small hydrodynamic diameter (180 ± 2.1 nm) and negative zeta potential (-18.20 mV). Moreover, CoQ10-LIP was combined with ultrasound-mediated microbubble destruction (UTMD) to enhance specific distribution of CoQ10 in kidney. In early stage of diabetic mellitus (DM), rats were administrated with CoQ10-LIP followed by UTMD (CoQ10-LIP+UTMD) to prevent occurrence of DN. Results revealed that CoQ10-LIP+UTMD effectively prevented the renal morphology and function of diabetics rats from damage. The protective mechanism of CoQ10-LIP was highly associated with protecting podocyte, promoting vascular repair and inhibiting cell apoptosis. Conclusively, CoQ10-LIP in combination with UTMD might be a potential strategy to prevent occurrence of DN.

10.
Adv Healthc Mater ; 7(9): e1701130, 2018 05.
Article in English | MEDLINE | ID: mdl-29350498

ABSTRACT

Herein, a theranostic liposome (QSC-Lip) integrated with superparamagnetic iron oxide nanoparticles (SPIONs) and quantum dots (QDs) and cilengitide (CGT) into one platform is constructed to target glioma under magnetic targeting (MT) for guiding surgical resection of glioma. Transmission electron microscopy and X-ray photoelectron spectroscopy confirm the complete coencapsulation of SPIONs and QDs in liposome. Besides, CGT is also effectively encapsulated into the liposome with an encapsulation efficiency of ∼88.9%. QSC-Lip exhibits a diameter of 100 ± 1.24 nm, zeta potential of -17.10 ± 0.11 mV, and good stability in several mediums. Moreover, each cargo shows a biphasic release pattern from QSC-Lip, a rapid initial release within initial 10 h followed by a sustained release. Cellular uptake of QSC-Lip is significantly enhanced by C6 cells under MT. In vivo dual-imaging studies show that QSC-Lip not only produces an obvious negative-contrast enhancement effect on glioma by magnetic resonance imaging but also makes tumor emitting fluorescence under MT. The dual-imaging of QSC-Lip guides the accurate resection of glioma by surgery. Besides, CGT is also specifically distributed to glioma after administration of QSC-Lip under MT, resulting in an effective inhibition of tumors. The integrated liposome may be a potential carrier for theranostics of tumor.


Subject(s)
Brain Neoplasms , Glioma , Magnetite Nanoparticles , Neoplasms, Experimental , Quantum Dots , Surgery, Computer-Assisted/methods , Theranostic Nanomedicine/methods , Animals , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Cell Line, Tumor , Glioma/diagnostic imaging , Glioma/surgery , Liposomes , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/therapeutic use , Neoplasms, Experimental/diagnostic imaging , Neoplasms, Experimental/surgery , Quantum Dots/chemistry , Quantum Dots/therapeutic use , Rats , Rats, Sprague-Dawley
11.
Drug Deliv ; 25(1): 364-375, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29366360

ABSTRACT

Silk was easily dyed in traditional textile industry because of its strong affinity to many colorants. Herein, the biocompatible silk fibroin was firstly extracted from Bombyx mori silkworm cocoons. And SF nanoparticles (SFNPs) were prepared for dyeing indocyanine green (ICG) and construct a therapeutic nano-platform (ICG-SFNPs) for photo-thermal therapy of glioblastoma. ICG was easily encapsulated into SFNPs with a very high encapsulation efficiency reaching to 97.7 ± 1.1%. ICG-SFNPs exhibited a spherical morphology with a mean particle size of 209.4 ± 1.4 nm and a negative zeta potential of -31.9 mV, exhibiting a good stability in physiological medium. Moreover, ICG-SFNPs showed a slow release profile of ICG in vitro, and only 24.51 ± 2.27% of the encapsulated ICG was released even at 72 h. Meanwhile, ICG-SFNPs exhibited a more stable photo-thermal effect than free ICG after exposure to near-infrared irradiation. The temperature of ICG-SFNPs rapidly increased by 33.9 °C within 10 min and maintained for a longer time. ICG-SFNPs were also easily internalized with C6 tumor cells in vitro, and a strong red fluorescence of ICG was observed in cytoplasm for cellular imaging. In vivo imaging showed that ICG-SFNPs were effectively accumulated inside tumor site of C6 glioma-bearing Xenograft nude mice through vein injection. Moreover, the temperature of tumor site was rapidly rising up to kill tumor cells after local NIR irradiation. After treatment, its growth was completely suppressed with the relative tumor volume of 0.55 ± 033 while free ICG of 33.72 ± 1.90. Overall, ICG-SFNPs may be an effective therapeutic means for intraoperative phototherapy and imaging.


Subject(s)
Fibroins/chemistry , Glioblastoma/diagnostic imaging , Indocyanine Green/administration & dosage , Indocyanine Green/chemistry , Nanoparticles/chemistry , Silk/chemistry , Animals , Mice , Mice, Inbred BALB C , Mice, Nude , Particle Size , Rats
12.
Artif Cells Nanomed Biotechnol ; 46(sup1): 302-313, 2018.
Article in English | MEDLINE | ID: mdl-29301415

ABSTRACT

Most breast tumours are heterogeneous and not only contain the bulk of differentiated tumour cells but also a small population of highly tumorigenic and intrinsically drug-resistant cancer stem cells (CSCs). Herein, a pH-sensitive nanoparticle with simultaneous encapsulation of curcumin and doxorubicin (CURDOX-NPs) was prepared by using monomethoxy (polyethylene glycol)-b-P (D,L-lactic-co-glycolic acid)-b-P (L-glutamic acid) polymer to simultaneously target the differentiated tumor cells and CSCs. CURDOX-NPs had a mean diameter of 107.5 nm and zeta potential of -13.7 mV, determined by DLS. Drug-loading efficiency for curcumin and doxorubicin was reaching to 80.30% and 96.2%, respectively. Moreover, a cascade sustained-release profiles with the faster release of CUR followed by a slower release of DOX was observed in normal pH7.4 condition. Moreover, a pH-sensitive release profile for each cargo was seen in pH5.0 condition. The anti-tumour effect of CURDOX-NPs on CSCs-enriching MCF-7/ADR mammospheres was confirmed by in vitro. Moreover, a significant regression of tumour growth after treatment with CURDOX-NPs was also observed in Xenograft mice model. The percentage of CSCs in tumour significantly decreased from 39.9% in control group to 6.82% after treatment with CURDOX-NPs. The combinational delivery of CUR and DOX may a potentially useful therapeutic strategy for refractory breast cancer.


Subject(s)
Breast Neoplasms/pathology , Curcumin/chemistry , Curcumin/pharmacology , Doxorubicin/chemistry , Doxorubicin/pharmacology , Nanoparticles/chemistry , Polyesters/chemistry , Polyethylene Glycols/chemistry , Polyglutamic Acid/analogs & derivatives , Animals , Capsules , Cell Proliferation/drug effects , Drug Carriers/chemistry , Drug Liberation , Humans , Hydrogen-Ion Concentration , MCF-7 Cells , Mice , Particle Size , Polyglutamic Acid/chemistry , Xenograft Model Antitumor Assays
13.
Int J Nanomedicine ; 12: 7103-7119, 2017.
Article in English | MEDLINE | ID: mdl-29026304

ABSTRACT

The present study seeks to observe the preventive effects of doxorubicin-induced cardiomyopathy (DOX-CM) in rats using targeted non-mitogenic acidic fibroblast growth factor (MaFGF) mediated by nanoparticles (NP) combined with ultrasound-targeted MB destruction (UTMD). DOX-CM rats were induced by intraperitoneally injected doxorubicin. Six weeks after intervention, the indices from the transthoracic echocardiography and velocity vector imaging showed that the left ventricular function in the MaFGF-loaded NP (MaFGF-NP) + UTMD group was significantly improved compared with the DOX-CM group. The increased malondialdehyde and decreased superoxide dismutase were observed in the DOX-CM group, while a significant increase in superoxide dismutase and a decrease in malondialdehyde were detected in the groups treated with MaFGF-NP + UTMD. From the Masson staining, the MaFGF-NP + UTMD group showed a significant difference from the DOX-CM group. The cardiac collagen volume fraction and the ratio of the perivascular collagen area to the luminal area number of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labelling positive cells in the MaFGF-NP + UTMD group decreased to 8.9%, 0.55-fold, compared with the DOX-CM group (26.5%, 1.7-fold). From terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labelling staining, the results showed the strongest inhibition of apoptosis progress in MaFGF-NP + UTMD group. The immunohistochemical staining of the TGF-ß1 in MaFGF-NP + UTMD group reached 3.6%, which was much lower than that of the DOX-CM group (12.6%). These results confirmed that the abnormalities, including left ventricular dysfunction, myocardial fibrosis, cardiomyocytes apoptosis and oxidative stress, could be suppressed by twice weekly MaFGF treatments for 6 consecutive weeks (free MaFGF or MaFGF-NP+/UTMD), with the strongest improvements observed in the MaFGF-NP + UTMD group. Western blot analyses of the heart tissue further revealed the highest pAkt levels, highest anti-apoptosis protein (Bcl-2) levels and strongest reduction in proapoptosis protein (Bax) levels in the MaFGF-NP + UTMD group. This study confirmed the preventive effects of DOX-CM in the rats with MaFGF-NP and UTMD by retarding myocardial fibrosis, inhibiting oxidative stress, and decreasing cardiomyocyte apoptosis.


Subject(s)
Cardiomyopathies/chemically induced , Cardiomyopathies/prevention & control , Doxorubicin/adverse effects , Fibroblast Growth Factor 1/therapeutic use , Microbubbles , Nanoparticles/chemistry , Ultrasonics , Animals , Apoptosis/drug effects , Body Weight/drug effects , Cardiomyopathies/diagnostic imaging , Cardiomyopathies/pathology , Fibroblast Growth Factor 1/pharmacology , Heart Ventricles/diagnostic imaging , Heart Ventricles/drug effects , Heart Ventricles/pathology , Heart Ventricles/ultrastructure , Male , Malondialdehyde/metabolism , Mitogens , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Nanoparticles/ultrastructure , Organ Size/drug effects , Oxidative Stress/drug effects , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Ventricular Dysfunction, Left/prevention & control , bcl-2-Associated X Protein/metabolism
14.
Colloids Surf B Biointerfaces ; 160: 704-714, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29035818

ABSTRACT

A poor percutaneous penetration capability for most topical anti-inflammatory drugs is one of the main causes compromising their therapeutic effects on psoriatic skin. Even though curcumin has shown a remarkable efficacy in the treatment of psoriasis, its effective penetration through the stratum corneum is still a major challenge during transdermal delivery. The aim of our study was to design skin-permeating nanoparticles (NPs) to facilitate delivery of curcumin to the deeper layers of the skin. A novel amphiphilic polymer, RRR-α-tocopheryl succinate-grafted-ε-polylysine conjugate (VES-g-ε-PLL) was synthesized and self-assembled into polymeric nanoparticles. The nanoparticles of VES-g-ε-PLL exhibiting an ultra-small hydrodynamic diameter (24.4nm) and a positive Zeta potential (19.6mV) provided a strong skin-penetrating ability in vivo. Moreover, curcumin could effectively be encapsulated in the polymeric nanoparticles with a drug loading capacity of 3.49% and an encapsulating efficiency of 78.45%. In order to prolong the retention time of the ultra-small curcumin-loaded nanoparticles (CUR-NPs) in the skin, silk fibroin was used as a hydrogel-based matrix to further facilitate topical delivery of the model drug. In vitro studies showed that CUR-NPs incorporated in silk fibroin hydrogel (CUR-NPs-gel) exhibited a slower release profile of curcumin than the plain CUR-gel, without compromising the skin penetration ability of CUR-NPs. In vivo studies on miquimod-induced psoriatic mice showed that CUR-NPs-gel exhibited a higher therapeutic effect than CUR-NPs as the former demonstrated a more powerful skin-permeating capability and a more effective anti-keratinization process. CUR-NPs-gel was therefore able to inhibit the expression of inflammatory cytokines (TNF-α, NF-κB and IL-6) to a greater extent. In conclusion, the permeable nanoparticle-gel system may be a potential carrier for the topical delivery of lipophilic anti-psoriatic drugs.


Subject(s)
Curcumin/administration & dosage , Fibroins/chemistry , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Nanoparticles/chemistry , Psoriasis/drug therapy , Skin/metabolism , Administration, Cutaneous , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Curcumin/chemistry , Curcumin/pharmacokinetics , Disease Models, Animal , Drug Delivery Systems/methods , Humans , Male , Mice, Inbred BALB C , Microscopy, Electron, Transmission , Nanoparticles/ultrastructure , Particle Size , Polymers/chemistry , Psoriasis/pathology , Silk/chemistry
15.
ACS Appl Mater Interfaces ; 9(35): 29580-29594, 2017 Sep 06.
Article in English | MEDLINE | ID: mdl-28809108

ABSTRACT

Hydrogel was not only used as an effective support matrix to prevent intrauterine adhesion after endometrial injury but also served as scaffold to sustain release of some therapeutics, especially growth factor. However, because of the rapid turnover of the endometrial mucus, the poor retention and bad absorption of therapeutic agents in damaged endometrial cavity were two important factors hindering their pharmacologic effect. Herein, a mucoadhesive hydrogel was described by using heparin-modified poloxamer (HP) as the matrix material and ε-polylysine (EPL) as functional excipient. Various EPL-HP hydrogels formulations are screened by rheological evaluation and mucoadhesion studies. It was found that the rheological and mucoadhesive properties of EPL-HP hydrogels were easily controlled by changing the amount of EPL in formulation. The storage modulus of EPL-HP hydrogel with 90 µg/mL of EPL (EPL-HP-90) was elevated to be 1.9 × 105 Pa, in accordance with the adhesion force rising to 3.18 N (10-fold higher than HP hydrogels). Moreover, in vitro release of model drug keratinocyte growth factor (KGF) from EPL-HP hydrogel was significantly accelerated by adding EPL in comparison with HP hydrogel. Both strong mucoadhesive ability and the accelerated drug release behavior for EPL-HP-90 made more of the encapsulated KGF absorbed by the uterus basal layer and endometrial glands after 8 h of administration in uterus cavity. Meanwhile, the morphology of endometrium in the injured uterus was repaired well after 3 d of treatment with KGF-EPL-HP-90 hydrogels. Compared with KGF-HP group, not only proliferation of endometrial epithelial cell and glands but also angiogenesis in the regenerated endometrium was obviously enhanced after treatment with KGF-EPL-HP-90 hydrogels. Alternatively, the cellular apoptosis in the damaged endometrium was significantly inhibited after treatment with KGF-EPL-HP-90 hydrogels. Overall, the mucoadhesive EPL-HP hydrogel with a suitable KGF release profile may be a more promising approach than HP hydrogel alone to repair the injured endometrium.


Subject(s)
Hydrogels/chemistry , Excipients , Female , Heparin , Humans , Poloxamer , Polylysine
16.
Colloids Surf B Biointerfaces ; 158: 295-307, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28711016

ABSTRACT

Severe toxicity and poor tumour penetration are two intrinsic limited factors to hinder the broad clinical application for most of first-line chemotherapeutics. In this study, a novel vitamin E succinate-grafted ε-polylysine (VES-g-PLL) polymer was synthesized by using ε-polylysine as backbone. By adjusting VES graft ratio, VES-g-PLL (50) with a theoretic VES graft ratio of 50% could self-assemble into a supermolecular micelle with a hydrodynamic diameter (Dh) of ca.20nm, and Zeta potential of 19.6mV. VES-g-PLL micelles themselves displayed a strong anti-tumour effect on glioma. The poorly water-soluble curcumin was effectively encapsulated in VES-g-PLL micelles with the drug loading amount and entrapment efficiency reaching 4.32% and 82.27%, respectively. In a physiologic medium, curcumin-loaded VES-g-PLL micelles (Cur-Micelles) not only remained stable without obvious drug leakage but also sustained the release of its encapsulated curcumin for a long time. Because of the ultra-small size and positively-charged surface, Cur-Micelles penetrated the deeper tumour zone than free curcumin, resulting in a significant inhibition of tumour spheroids growth. Moreover, in vivo strong antitumor effect of Cur-Micelles was also exhibited at assistance of ultrasound-targeted microbubble destruction and the real-time MRI imaging demonstrated a nearly complete suppression of glioma after 28days of treatment. TUNEL staining showed that the therapeutic mechanism of Cur-Micelles was relevant to the apoptosis of tumour cells. Finally, in vivo nontoxicity of Cur-Micelles against normal organs including heart, liver, spleen, lung and kidney tissues was also demonstrated by the HE staining. In conclusion, VES-g-PLL micelles may serve as a potential carrier for curcumin to enhance tumour penetration and improve therapeutic effect on glioma.


Subject(s)
Curcumin/chemistry , Micelles , Polylysine/chemistry , Apoptosis/drug effects , Curcumin/pharmacology , Glioma/metabolism , Humans , In Situ Nick-End Labeling , Kidney/metabolism , Liver/metabolism , Lung/metabolism , MCF-7 Cells , Spleen/metabolism , alpha-Tocopherol/analogs & derivatives , alpha-Tocopherol/metabolism
17.
Adv Healthc Mater ; 6(19)2017 Oct.
Article in English | MEDLINE | ID: mdl-28661050

ABSTRACT

How to maintain the stability of basic fibroblast growth factor (bFGF) in wounds with massive wound fluids is important to accelerate wound healing. Here, a novel liposome with hydrogel core of silk fibroin (SF-LIP) is successfully developed by the common liposomal template, followed by gelation of liquid SF inside vesicle under sonication. SF-LIP is capable of encapsulating bFGF (SF-bFGF-LIP) with high efficiency, having a diameter of 99.8 ± 0.5 nm and zeta potential of -9.41 ± 0.10 mV. SF-LIP effectively improves the stability of bFGF in wound fluids. After 8 h of incubation with wound fluids at 37 °C, more than 50% of free bFGF are degraded, while only 18.6% of the encapsulated bFGF in SF-LIP are destroyed. Even after 3 d of preincubation with wound fluids, the cell proliferation activity and wound healing ability of SF-bFGF-LIP are still preserved but these are severely compromised for the conventional bFGF-liposome (bFGF-LIP). In vivo experiments reveal that SF-bFGF-LIP accelerates the wound closure of mice with deep second-degree scald. Moreover, due to the protective effect and enhanced penetration ability, SF-bFGF-LIP is very helpful to induce regeneration of vascular vessel in comparison with free bFGF or bFGF-LIP. The liposome with SF hydrogel core may be a potential carrier as growth factors for wound healing.


Subject(s)
Burns/drug therapy , Fibroblast Growth Factor 2/administration & dosage , Fibroins/chemistry , Hydrogels/chemistry , Liposomes/chemistry , Wound Healing/drug effects , Animals , Burns/pathology , Diffusion , Drug Compounding/methods , Drug Stability , Fibroblast Growth Factor 2/chemistry , Mice , Mice, Inbred C57BL , Nanocapsules/chemistry , Nanocapsules/ultrastructure , Particle Size , Treatment Outcome , Wound Closure Techniques
18.
Drug Deliv ; 24(1): 867-881, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28574291

ABSTRACT

Endometrial injury usually results in intrauterine adhesion (IUA), which is an important cause of infertility and recurrent miscarriage in reproductive women. There is still lack of an effective therapeutic strategy to prevent occurrence of IUA. Keratinocyte growth factor (KGF) is a potent repair factor for epithelial tissues. Here, a temperature-sensitive heparin-modified poloxamer (HP) hydrogel with affinity to KGF (KGF-HP) was used as a support matrix to prevent IUA and deliver KGF. The rheology of KGF-HP hydrogel was carefully characterized. The cold KGF-HP solution was rapidly transited to hydrogel with suitable storage modulus (G') and loss modulus (G″) for the applications of uterus cavity at temperature of 33 °C. In vitro release demonstrated that KGF was released from HP hydrogels in sustained release manner for a long time. In vivo bioluminescence imaging showed that KGF-HP hydrogel was able to prolong the retention of the encapsulated KGF in injured uterus of rat model. Moreover, the morphology and function of the injured uterus were significantly recovered after administration of KGF-HP hydrogel, which were evaluated by two-dimensional ultrasound imaging and receptive fertility. Not only proliferation of endometrial glandular epithelial cells and luminal epithelial cells but also angiogenesis of injured uterus were observed by Ki67 and CD31 staining after 7 d of treatment with KGF-HP hydrogel. Finally, a close relatively relationship between autophagy and proliferation of endometrial epithelial cells (EEC) and angiogenesis was firstly confirmed by detecting expression of LC3-II and P62 after KGF treatment. Overall, KGF-HP may be used as a promising candidate for IUA treatment.


Subject(s)
Uterus , Animals , Female , Fibroblast Growth Factor 7 , Heparin , Hydrogel, Polyethylene Glycol Dimethacrylate , Hydrogels , Poloxamer , Rats , Temperature
19.
Int J Pharm ; 528(1-2): 664-674, 2017 Aug 07.
Article in English | MEDLINE | ID: mdl-28642201

ABSTRACT

Diabetic nephropathy (DN) is one of the most common and lethal microvascular complications of diabetes. This study aimed to explore whether coenzymeQ10 (CoQ10) as an antioxidant combined with ultrasound-targeted microbubble destruction (UTMD) could reverse the progress of early diabetic nephropathy (DN). CoQ10 has great potential to treat early DN. However, the clinical application of CoQ10 has been limited because of its low aqueous solubility and non-specific distribution. Therefore, CoQ10-loaded liposomes (CoQ10-lip) were prepared and combined with ultrasound microbubbles for the early theranostics of DN. CoQ10-lip exhibited a good round morphology with a diameter of 183±1.7nm and a negative zeta potential of -25.3mV, which was capable of prolonging the release of the encapsulated CoQ10. The early DN rat models were induced by streptozotocin (STZ) and confirmed by contrast-enhanced ultrasound (CEUS) and 24-h urinary albumin. After the administration of CoQ10-lip combined with the UTMD technique to rats with early DN, the morphology and function of the kidney were evaluated by ultrasonography, histological and molecular analyses. The renal hemodynamics were significantly improved, moreover, 24-h urinary protein, and oxidative stress indexes were modulated after treatment with CoQ10-lip+UTMD indicating recovery of renal function. An elevated level of Nphs2 protein and reduced caspase 3 level indicated the preservation of podocytes and inhibition of cell apoptosis after CoQ10-lip+UTMD treatment. The molecular mechanism was associated with the upregulation of Bcl-2 and the downregulation of Bax. Moreover, the combination of CoQ10-lip and ultrasound microbubbles demonstrated a better protective effect on the damaged kidney than the other groups (free CoQ10 or CoQ10-lip+/- UTMD). Conclusively, CoQ10-lip in combination with ultrasound microbubbles might be a potential strategy to reverse the progress of early DN.


Subject(s)
Diabetic Nephropathies/drug therapy , Liposomes/chemistry , Microbubbles/therapeutic use , Theranostic Nanomedicine , Ubiquinone/analogs & derivatives , Animals , Antioxidants/therapeutic use , Diabetes Mellitus, Experimental , Male , Rats , Rats, Sprague-Dawley , Ubiquinone/therapeutic use
20.
PLoS One ; 12(3): e0173814, 2017.
Article in English | MEDLINE | ID: mdl-28291798

ABSTRACT

In this study, porous gelatin microspheres (GMSs) were constructed to improve the neuroprotective effect of basic fibroblast growth factor (bFGF) on spinal cord injury. GMSs were prepared by a W/O emulsion template, followed by cross-linking, washing and drying. The particle sizes and surface porosity of the blank GMSs were carefully characterized by scan electronic microscopy. The blank GMSs have a mean particle size of 35µm and theirs surface was coarse and porous. bFGF was easily encapsulated inside the bulk GMSs through diffusion along the porous channel. 200µg of bFGF was completely encapsulated in 100mg of GMSs. The bFGF-loaded GMSs displayed a continuous drug release pattern without an obvious burst release over two weeks in vitro. Moreover, the therapeutic effects of bFGF-loaded GMSs were also evaluated in spinal cord injury rat model. After implantation of bFGF-loaded GMSs, the recovery of the motor function of SCI rats were evaluated by behavioral score and foot print experiment. The motor function of SCI rats treated with bFGF-loaded GMSs was more obvious than that treated with free bFGF solution (P<0.05). At the 28th days after treatment, rats were sacrificed and the injured spinal were removed for histopathological and apoptosis examination. Compared with treatment with free bFGF solution, treatment with bFGF-loaded GMSs resulted in a less necrosis, less infiltration of leukocytes, and a reduced the cavity ratio and less apoptotic cells in injured spinal(P<0.01), indicating its better therapeutic effect. Implantable porous GMSs may be a potential carrier to deliver bFGF for therapy of spinal cord injury.


Subject(s)
Fibroblast Growth Factor 2/administration & dosage , Gelatin/administration & dosage , Microspheres , Neuroprotective Agents/administration & dosage , Spinal Cord Injuries/physiopathology , Animals , Immunohistochemistry , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...