Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Assist Reprod Genet ; 35(1): 41-48, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29236205

ABSTRACT

PURPOSE: The aim of this study is to optimize fibrin matrix composition in order to mimic human ovarian tissue architecture for human ovarian follicle encapsulation and grafting. METHODS: Ultrastructure of fresh human ovarian cortex in age-related women (n = 3) and different fibrin formulations (F12.5/T1, F30/T50, F50/T50, F75/T75), rheology of fibrin matrices and histology of isolated and encapsulated human ovarian follicles in these matrices. RESULTS: Fresh human ovarian cortex showed a highly fibrous and structurally inhomogeneous architecture in three age-related patients, but the mean ± SD of fiber thickness (61.3 to 72.4 nm) was comparable between patients. When the fiber thickness of four different fibrin formulations was compared with human ovarian cortex, F50/T50 and F75/T75 showed similar fiber diameters to native tissue, while F12.5/T1 was significantly different (p value < 0.01). In addition, increased concentrations of fibrin exhibited enhanced storage modulus with F50/T50, resembling physiological ovarian rigidity. Excluding F12.5/T1 from further analysis, only three remaining fibrin matrices (F30/T50, F50/T50, F75/T75) were histologically investigated. For this, frozen-thawed fragments of human ovarian tissue collected from 22 patients were used to isolate ovarian follicles and encapsulate them in the three fibrin formulations. All three yielded similar follicle recovery and loss rates soon after encapsulation. Therefore, based on fiber thickness, porosity, and rigidity, we selected F50/T50 as the fibrin formulation that best mimics native tissue. CONCLUSIONS: Of all the different fibrin matrix concentrations tested, F50/T50 emerged as the combination of choice in terms of ultrastructure and rigidity, most closely resembling human ovarian cortex.


Subject(s)
Artificial Organs , Fibrin/chemistry , Ovary , Biomimetic Materials/chemistry , Drug Compounding , Elasticity , Female , Hardness , Humans , Mechanical Phenomena , Ovarian Follicle/transplantation , Ovarian Follicle/ultrastructure , Ovary/chemistry , Ovary/cytology , Ovary/ultrastructure
2.
Gels ; 1(2): 235-255, 2015 Dec 07.
Article in English | MEDLINE | ID: mdl-30674175

ABSTRACT

"Smart" materials have considerably evolved over the last few years for specific applications. They rely on intelligent macromolecules or (supra-)molecular motifs to adapt their structure and properties in response to external triggers. Here, a supramolecular stimuli-responsive polymer gel is constructed from heterotelechelic double hydrophilic block copolymers that incorporate thermo-responsive sequences. These macromolecular building units are synthesized via a three-step controlled radical copolymerization and then hierarchically assembled to yield coordination micellar hydrogels. The dynamic mechanical properties of this particular class of materials are studied in shear flow and finely tuned via temperature changes. Notably, rheological experiments show that structurally reinforcing the micellar network nodes leads to precise tuning of the viscoelastic response and yield behavior of the material. Hence, they constitute promising candidates for specific applications, such as mechano-sensors.

SELECTION OF CITATIONS
SEARCH DETAIL
...