Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 8(44): eabo7247, 2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36332029

ABSTRACT

The HUSH (human silencing hub) complex contains the H3K9me3 binding protein M-phase phosphoprotein 8 (MPP8) and recruits the histone methyltransferase SETDB1 as well as Microrchidia CW-type zinc finger protein 2 (MORC2). Functional and mechanistic studies of the HUSH complex have hitherto been centered around SETDB1 while the in vivo functions of MPP8 and MORC2 remain elusive. Here, we show that genetic inactivation of Mphosph8 or Morc2a in the nervous system of mice leads to increased brain size, altered brain architecture, and behavioral changes. Mechanistically, in both mouse brains and human cerebral organoids, MPP8 and MORC2 suppress the repetitive-like protocadherin gene cluster in an H3K9me3-dependent manner. Our data identify MPP8 and MORC2, previously linked to silencing of repetitive elements via the HUSH complex, as key epigenetic regulators of protocadherin expression in the nervous system and thereby brain development and neuronal individuality in mice and humans.

2.
Nat Methods ; 14(12): 1191-1197, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29039415

ABSTRACT

Pooled CRISPR screens are a powerful tool for assessments of gene function. However, conventional analysis is based exclusively on the relative abundance of integrated single guide RNAs (sgRNAs) between populations, which does not discern distinct phenotypes and editing outcomes generated by identical sgRNAs. Here we present CRISPR-UMI, a single-cell lineage-tracing methodology for pooled screening to account for cell heterogeneity. We generated complex sgRNA libraries with unique molecular identifiers (UMIs) that allowed for screening of clonally expanded, individually tagged cells. A proof-of-principle CRISPR-UMI negative-selection screen provided increased sensitivity and robustness compared with conventional analysis by accounting for underlying cellular and editing-outcome heterogeneity and detection of outlier clones. Furthermore, a CRISPR-UMI positive-selection screen uncovered new roadblocks in reprogramming mouse embryonic fibroblasts as pluripotent stem cells, distinguishing reprogramming frequency and speed (i.e., effect size and probability). CRISPR-UMI boosts the predictive power, sensitivity, and information content of pooled CRISPR screens.


Subject(s)
CRISPR-Cas Systems/genetics , Cell Lineage/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Gene Editing , RNA, Guide, Kinetoplastida , Single-Cell Analysis/methods , Animals , Cells, Cultured , Fibroblasts/cytology , Gene Knockout Techniques , Genetic Vectors , Mice , Pluripotent Stem Cells/cytology , Retroviridae/genetics , Signal-To-Noise Ratio
3.
Nature ; 550(7674): 114-118, 2017 10 05.
Article in English | MEDLINE | ID: mdl-28953874

ABSTRACT

The ability to directly uncover the contributions of genes to a given phenotype is fundamental for biology research. However, ostensibly homogeneous cell populations exhibit large clonal variance that can confound analyses and undermine reproducibility. Here we used genome-saturated mutagenesis to create a biobank of over 100,000 individual haploid mouse embryonic stem (mES) cell lines targeting 16,970 genes with genetically barcoded, conditional and reversible mutations. This Haplobank is, to our knowledge, the largest resource of hemi/homozygous mutant mES cells to date and is available to all researchers. Reversible mutagenesis overcomes clonal variance by permitting functional annotation of the genome directly in sister cells. We use the Haplobank in reverse genetic screens to investigate the temporal resolution of essential genes in mES cells, and to identify novel genes that control sprouting angiogenesis and lineage specification of blood vessels. Furthermore, a genome-wide forward screen with Haplobank identified PLA2G16 as a host factor that is required for cytotoxicity by rhinoviruses, which cause the common cold. Therefore, clones from the Haplobank combined with the use of reversible technologies enable high-throughput, reproducible, functional annotation of the genome.


Subject(s)
Biological Specimen Banks , Genomics/methods , Haploidy , Mouse Embryonic Stem Cells/metabolism , Mutation , Animals , Blood Vessels/cytology , Cell Lineage/genetics , Common Cold/genetics , Common Cold/virology , Genes, Essential/genetics , Genetic Testing , HEK293 Cells , Homozygote , Humans , Mice , Mouse Embryonic Stem Cells/cytology , Neovascularization, Physiologic/genetics , Phospholipases A2, Calcium-Independent/genetics , Phospholipases A2, Calcium-Independent/metabolism , Rhinovirus/pathogenicity
4.
Cell Cycle ; 14(14): 2293-300, 2015.
Article in English | MEDLINE | ID: mdl-25945652

ABSTRACT

Diabetes mellitus type 2 (T2DM), insulin therapy, and hyperinsulinemia are independent risk factors of liver cancer. Recently, the use of a novel inhibitor of insulin degrading enzyme (IDE) was proposed as a new therapeutic strategy in T2DM. However, IDE inhibition might stimulate liver cell proliferation via increased intracellular insulin concentration. The aim of this study was to characterize effects of inhibition of IDE activity in HepG2 hepatoma cells and to analyze liver specific expression of IDE in subjects with T2DM. HepG2 cells were treated with 10 nM insulin for 24 h with or without inhibition of IDE activity using IDE RNAi, and cell transcriptome and proliferation rate were analyzed. Human liver samples (n = 22) were used for the gene expression profiling by microarrays. In HepG2 cells, IDE knockdown changed expression of genes involved in cell cycle and apoptosis pathways. Proliferation rate was lower in IDE knockdown cells than in controls. Microarray analysis revealed the decrease of hepatic IDE expression in subjects with T2DM accompanied by the downregulation of the p53-dependent genes FAS and CCNG2, but not by the upregulation of proliferation markers MKI67, MCM2 and PCNA. Similar results were found in the liver microarray dataset from GEO Profiles database. In conclusion, IDE expression is decreased in liver of subjects with T2DM which is accompanied by the dysregulation of p53 pathway. Prolonged use of IDE inhibitors for T2DM treatment should be carefully tested in animal studies regarding its potential effect on hepatic tumorigenesis.


Subject(s)
Cell Proliferation/drug effects , Insulin/pharmacology , Insulysin/metabolism , Liver/metabolism , Adult , Aged , Apoptosis/drug effects , Cohort Studies , Cyclin G2/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Female , Gene Expression Profiling , Hep G2 Cells , Humans , Insulysin/antagonists & inhibitors , Insulysin/genetics , Ki-67 Antigen/metabolism , Male , Middle Aged , Minichromosome Maintenance Complex Component 2/metabolism , Proliferating Cell Nuclear Antigen/metabolism , RNA Interference , Transcriptome/drug effects , fas Receptor/metabolism
5.
Peptides ; 65: 12-9, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25620618

ABSTRACT

Obesity, type 2 diabetes and associated metabolic diseases are characterized by low-grade systemic inflammation which involves interplay of nutrition and monocyte/macrophage functions. We suggested that some factors such as nutrient components, neuropeptides involved in the control of gastrointestinal functions, and gastrointestinal hormones might influence immune cell functions and in this way contribute to the disease pathogenesis. The aim of this study was to investigate the mRNA expression of twelve nutrition-associated receptors in peripheral blood mononuclear cells (PBMC), isolated monocytes and monocyte-derived macrophages and their regulation under the switching from the high-carbohydrate low-fat diet to the low-carbohydrate high-fat (LC/HFD) isocaloric diet in healthy humans. The mRNA expression of receptors for short chain fatty acids (GPR41, GPR43), bile acids (TGR5), incretins (GIPR, GLP1R), cholecystokinin (CCKAR), neuropeptides VIP and PACAP (VIPR1, VIPR2), and neurotensin (NTSR1) was detected in PBMC and monocytes, while GPR41, GPR43, GIPR, TGR5, and VIPR1 were found in macrophages. Correlations of the receptor expression in monocytes with a range of metabolic and inflammatory markers were found. In non-obese subjects, the dietary switch to LC/HFD induced the increase of GPR43 and VIPR1 expression in monocytes. No significant differences of receptor expression between normal weight and moderately obese subjects were found. Our study characterized for the first time the expression pattern of nutrition-associated receptors in human blood monocytes and its dietary-induced changes linking metabolic responses to nutrition with immune functions in health and metabolic diseases.


Subject(s)
Dietary Carbohydrates/administration & dosage , Dietary Fats/administration & dosage , Gene Expression Regulation/drug effects , Macrophages/drug effects , Monocytes/drug effects , Obesity/genetics , Adult , Case-Control Studies , Cholecystokinin/genetics , Cholecystokinin/metabolism , Diet, Fat-Restricted , Diet, High-Fat , Female , Humans , Incretins/genetics , Incretins/metabolism , Macrophages/metabolism , Male , Monocytes/metabolism , Neuropeptides/genetics , Neuropeptides/metabolism , Obesity/blood , Organ Specificity , Primary Cell Culture , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, Neurotensin/genetics , Receptors, Neurotensin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...