Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Biotechnol ; 387: 44-48, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38582405

ABSTRACT

The biocatalytic aerobic "in-water" reduction of anthranilic acid to 2-aminobenzaldehyde by growing cultures of the basidiomycetous white-rot fungus Bjerkandera adusta has been studied. The high specific activity of Bjerkandera adusta towards the carboxylic group of anthranilic acid that allows avoiding the formation of the corresponding alcohol has been demonstrated using different substrate concentrations. The presence of ethanol as co-solvent allows increasing the yield of target product. In contrast to chemical reducing agents that usually yield 2-aminobenzyl alcohol, an overreduction of anthranilic acid is completely suppressed by the fungus and gives the target flavor compound in satisfactory preparative yields. It was shown that the activity of Bjerkandera adusta towards anthranilic acid does not apply to its m- and p-isomers.


Subject(s)
Benzaldehydes , ortho-Aminobenzoates , ortho-Aminobenzoates/chemistry , ortho-Aminobenzoates/metabolism , Benzaldehydes/chemistry , Benzaldehydes/metabolism , Oxidation-Reduction , Coriolaceae/metabolism , Coriolaceae/chemistry
2.
Org Lett ; 24(27): 4845-4849, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35559604

ABSTRACT

We present a strategy for the skeletal editing of diamondoid structures to selectively displace methylene for heteroatom moieties in the carbon framework. This constitutes a synthetic approach to doping diamond-like structures with electron donor dopants (O, N, and S). The key steps involve two subsequent retro-Barbier fragmentations followed by cage reconstruction in the presence of a dopant. Remarkably, the incorporation of n-dopants reduces the strain of the diamondoid cage as shown through homodesmotic equations.

3.
Bioorg Chem ; 108: 104651, 2021 03.
Article in English | MEDLINE | ID: mdl-33508677

ABSTRACT

The reductive activity of various basidiomycetous fungi towards carbonyl compounds was screened on an analytical level. Some strains displayed high reductive activities toward aromatic carbonyls and aliphatic ketones. Utilizing growing whole-cell cultures of Dichomitus albidofuscus, the reactions were up-scaled to a preparative level in an aqueous system. The reactions showed excellent selectivities and gave the respective alcohols in high yields. Carboxylic acids were also reduced to aldehydes and alcohols under the same conditions. In particular, benzoic, vanillic, ferulic, and p-coumaric acid were reduced to benzyl alcohol, vanillin, dihydroconiferyl alcohol and 1-hydroxy-3-(4-hydroxyphenyl)propan, respectively.


Subject(s)
Alcohols/metabolism , Ketones/metabolism , Polyporaceae/metabolism , Alcohols/chemistry , Biocatalysis , Ketones/chemistry , Molecular Structure , Oxidation-Reduction
4.
J Am Chem Soc ; 139(46): 16696-16707, 2017 11 22.
Article in English | MEDLINE | ID: mdl-29037036

ABSTRACT

The covalent diamantyl (C28H38) and oxadiamantyl (C26H34O2) dimers are stabilized by London dispersion attractions between the dimer moieties. Their solid-state and gas-phase structures were studied using a multitechnique approach, including single-crystal X-ray diffraction (XRD), gas-phase electron diffraction (GED), a combined GED/microwave (MW) spectroscopy study, and quantum chemical calculations. The inclusion of medium-range electron correlation as well as the London dispersion energy in density functional theory is essential to reproduce the experimental geometries. The conformational dynamics computed for C26H34O2 agree well with solution NMR data and help in the assignment of the gas-phase MW data to individual diastereomers. Both in the solid state and the gas phase the central C-C bond is of similar length for the diamantyl [XRD, 1.642(2) Å; GED, 1.630(5) Å] and the oxadiamantyl dimers [XRD, 1.643(1) Å; GED, 1.632(9) Å; GED+MW, 1.632(5) Å], despite the presence of two oxygen atoms. Out of a larger series of quantum chemical computations, the best match with the experimental reference data is achieved with the PBEh-3c, PBE0-D3, PBE0, B3PW91-D3, and M06-2X approaches. This is the first gas-phase confirmation that the markedly elongated C-C bond is an intrinsic feature of the molecule and that crystal packing effects have only a minor influence.

5.
J Am Chem Soc ; 137(20): 6577-86, 2015 May 27.
Article in English | MEDLINE | ID: mdl-25914113

ABSTRACT

Nanometer-sized doubly bonded diamondoid dimers and trimers, which may be viewed as models of diamond with surface sp(2)-defects, were prepared from corresponding ketones via a McMurry coupling and were characterized by spectroscopic and crystallographic methods. The neutral hydrocarbons and their radical cations were studied utilizing density functional theory (DFT) and ab initio (MP2) methods, which reproduce the experimental geometries and ionization potentials well. The van der Waals complexes of the oligomers with their radical cations that are models for the self-assembly of diamondoids, form highly delocalized and symmetric electron-deficient structures. This implies a rather high degree of σ-delocalization within the hydrocarbons, not too dissimilar to delocalized π-systems. As a consequence, sp(2)-defects are thus also expected to be nonlocal, thereby leading to the observed high surface charge mobilities of diamond-like materials. In order to be able to use the diamondoid oligomers for subsequent surface attachment and modification, their C-H-bond functionalizations were studied, and these provided halogen and hydroxy derivatives with conservation of unsaturation.

6.
J Org Chem ; 79(4): 1861-6, 2014 Feb 21.
Article in English | MEDLINE | ID: mdl-24433143

ABSTRACT

Homodiamantane bromination and nitroxylation are accompanied by contraction of the seven-membered ring to give the corresponding substituted 1-diamantylmethyl derivatives. In contrast, CH-bond hydroxylations with dimethyldioxirane retain the cage and give both apically and medially substituted homodiamantanes. The product ratios are in accord with the barriers for the oxygen insertion computed with density functional theory methods only if solvation is included through a polarizable continuum model. B3LYP-D3 and M06-2X computations with a 6-31G(d,p) basis set on the oligomeric van der Waals complexes predict the potential of homodiamantane derivatives for surface modifications with conformationally slightly flexible diamondoid homologues.

7.
Org Lett ; 11(14): 3068-71, 2009 Jul 16.
Article in English | MEDLINE | ID: mdl-19586063

ABSTRACT

Oxadiamondoids representing a new class of carbon nanoparticles were prepared from the respective diamondoid ketones via an effective two-step procedure involving addition of methyl magnesium iodide and oxidation with trifluoroperacetic acid in trifluoroacetic acid. The reactivities of the oxacages are determined by the position of the dopant and are in good agreement with computational predictions.

SELECTION OF CITATIONS
SEARCH DETAIL
...