Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Motil Cytoskeleton ; 37(4): 363-77, 1997.
Article in English | MEDLINE | ID: mdl-9258508

ABSTRACT

Phalloidin staining of muscle does not reflect the known disposition of sarcomeric thin filaments. Quantitative image analysis and steady-state fluorescence polarization microscopy are used to measure the local intensity and orientation of tetramethyl rhodamine-labeled phalloidin (TR-phalloidin) in skinned myofibrils. TR-phalloidin staining of isolated skeletal myofibrils labeled while in rigor reveals fluorescence that is brighter at the pointed ends of the thin filaments and Z lines than it is in the middle of the filaments. In cardiac myofibrils, phalloidin staining is uniform along the lengths of the thin filaments in both relaxed and rigor myofibrils, except in 0.2-micron dark areas on either side of the Z line. Extraction of myosin or tropomyosin-troponin molecules does not change the nonuniform staining. To test whether long-term storage in glycerol changes the binding of phalloidin to thin filaments in myofibrils, minimally permeabilized (briefly skinned) myofibrils, or myofibrils stored in glycerol for at least 7 days (glycerol extraction) were compared. TR-phalloidin was well ordered throughout the sarcomere in briefly skinned skeletal and cardiac myofibrils, but TR-phalloidin bound to the Z line and pointed ends of thin filaments was randomly oriented in glycerol-extracted myofibrils, suggesting that the ends of the thin filaments become disordered after glycerol extraction. In relaxed skeletal myofibrils with sarcomere lengths greater than 3.0 microns, staining was nearly uniform all along the actin filaments. Exogeneous bare actin filaments polymerized from the Z line (Sanger et al., 1984: J. Cell Biol. 98:825-833) in and along the myofibril bind rhodamine phalloidin uniformly. Our results support the hypothesis that nebulin can block the binding of phalloidin to actin in skeletal myofibrils and nebulette can block phalloidin binding to cardiac thin filaments.


Subject(s)
Actin Cytoskeleton/metabolism , Fluorescent Dyes/metabolism , Muscle, Skeletal/metabolism , Myocardium/metabolism , Myofibrils/metabolism , Phalloidine/analogs & derivatives , Rhodamines/metabolism , Animals , Fluorescent Dyes/pharmacology , Myosins/metabolism , Phalloidine/metabolism , Phalloidine/pharmacology , Rabbits , Rhodamines/pharmacology , Sarcomeres/metabolism , Tropomyosin/metabolism , Troponin/metabolism
2.
Cell Motil Cytoskeleton ; 30(3): 229-46, 1995.
Article in English | MEDLINE | ID: mdl-7758139

ABSTRACT

During its motion inside host cells, Listeria monocytogenes promotes the formation of a column of actin filaments that extends outward from the distal end of the moving bacterium. The column is constructed of short actin filaments that polymerize at the bacteria-column interface. To get a measure of filament organization in the column, Listeria grown in cultured PtK2 cells were studied with steady state fluorescence polarization, confocal microscopy, and whole cell intermediate voltage electron microscopy. Although actin filament ordering was higher in nearby stress fibers than in the Listeria-associated actin, four distinct areas of ordering could be observed in fluorescence polarization ratio images of bacteria: 1) the surface of the bacteria, 2) the cytoplasm next to the bacteria, 3) the outer shell of the actin column, and 4) the core of the column. Filaments were preferentially oriented parallel to the long axis of the column with highest ordering along the long axis of the bacterial surface and in the shell of the tail. The lowest ordering was in the core (where filaments are possibly also shorter with respect to the cup and the shell), whereas in the adjacent cytoplasm, filaments were oriented perpendicular to the column. A mutant of Listeria that can polymerize actin around itself but cannot move intracellularly does not have its actin organized along the bacterial surface. Thus the alignment of the actin filaments along the bacterial surfaces may be important for the intracellular movement. These conclusions are also supported by confocal microscopy and whole mount electron microscopic data that also reveal that actin filaments can be deposited asymmetrically around the long axis of the bacteria, a distribution that may affect the direction of motility of Listeria monocytogenes inside infected cells.


Subject(s)
Actins/chemistry , Actins/ultrastructure , Listeria monocytogenes/chemistry , Animals , Cell Movement/physiology , Cells, Cultured/microbiology , Fluorescence Polarization , Microscopy, Confocal , Microscopy, Electron , Microvilli/chemistry , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...