Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(20)2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37896348

ABSTRACT

Effective insulation of buildings and other industrial objects requires the use of materials and system solutions that ensure maximum uniformity and density of insulation shells. The study focuses on the development of insulation systems based on expanded polyethylene and, in particular, on the development of modified polyethylene with reduced flammability containing a flame-retardant modified montmorillonite clay, which does not hinder gas formation, and silicate nanofillers in layered construction. Active experiments based on mathematical design methods allowed us to establish an analytical relationship between flame-retardant and modifier consumption and extruder pressure and response functions: average density of polyethylene foam and flammability criterion. The flammability criterion was taken as the oxygen index of the modified polyethylene foam. A foaming agent masterbatch was used as the flame retardant. Analytical optimization of mathematical models obtained as a result of active experiments allowed us to determine the optimal flame-retardant consumption, which was 3.7-3.8% of the polymer mass. Optimised systems for average density and oxygen index of flammability of modified polyethylene were obtained. A nomogram for predicting the material properties and selecting the composition, and an algorithm for a computer program for evaluating the properties of modified polyethylene foam as a function of the values of various factors, were developed. Taking into account the possible expansion of the scope of application of rolled polyethylene foam and seamless insulation shells based on it, possible solutions for insulation systems were studied using the program THERM, and a combined insulation system was adopted.

2.
Polymers (Basel) ; 15(13)2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37447434

ABSTRACT

Wood fiber and its products are modified to increase fire and bio-resistance. The best results are achieved by using modifiers that enter into chemical interaction with the hydroxylated substrate, forming the organic matrix of the materials. The purpose of the research described in the article was to study the possibility of using boron-nitrogen compounds to modify cellulose and cellulose-containing materials to improve the performance, bio- and fire-protective properties of construction materials, as well as to optimize the consumption of boron-nitrogen compounds. As a result of the research, it was found that the boron-nitrogen compounds used in the compositions developed here chemically interact with hydroxyl groups at the C6-atom of cellulose. The chemical interaction of boron-nitrogen compounds with cellulose is an inter-crystalline process occurring without destruction of the crystal structure of the substrate since the modifier molecules bind with the more accessible hydroxyl groups of the amorphous regions of cellulose. Thus, surface modification with boron-nitrogen compounds does not result in accelerated aging of cellulose-containing materials and loss of strength but, on the contrary, increases the durability of wooden structures.

3.
BMC Genomics ; 17: 473, 2016 06 24.
Article in English | MEDLINE | ID: mdl-27342196

ABSTRACT

BACKGROUND: Gene fusions are the most powerful type of in silico-derived functional associations. However, many fusion compilations were made when <100 genomes were available, and algorithms for identifying fusions need updating to handle the current avalanche of sequenced genomes. The availability of a large fusion dataset would help probe functional associations and enable systematic analysis of where and why fusion events occur. RESULTS: Here we present a systematic analysis of fusions in prokaryotes. We manually generated two training sets: (i) 121 fusions in the model organism Escherichia coli; (ii) 131 fusions found in B vitamin metabolism. These sets were used to develop a fusion prediction algorithm that captured the training set fusions with only 7 % false negatives and 50 % false positives, a substantial improvement over existing approaches. This algorithm was then applied to identify 3.8 million potential fusions across 11,473 genomes. The results of the analysis are available in a searchable database at http://modelseed.org/projects/fusions/ . A functional analysis identified 3,000 reactions associated with frequent fusion events and revealed areas of metabolism where fusions are particularly prevalent. CONCLUSIONS: Customary definitions of fusions were shown to be ambiguous, and a stricter one was proposed. Exploring the genes participating in fusion events showed that they most commonly encode transporters, regulators, and metabolic enzymes. The major rationales for fusions between metabolic genes appear to be overcoming pathway bottlenecks, avoiding toxicity, controlling competing pathways, and facilitating expression and assembly of protein complexes. Finally, our fusion dataset provides powerful clues to decipher the biological activities of domains of unknown function.


Subject(s)
Escherichia coli/genetics , Gene Fusion , Vitamin B Complex/metabolism , Algorithms , Escherichia coli/enzymology , Genes, Bacterial , Metabolic Networks and Pathways , Vitamin B Complex/genetics
4.
BMC Genomics ; 16: 382, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25975565

ABSTRACT

BACKGROUND: It is now recognized that enzymatic or chemical side-reactions can convert normal metabolites to useless or toxic ones and that a suite of enzymes exists to mitigate such metabolite damage. Examples are the reactive imine/enamine intermediates produced by threonine dehydratase, which damage the pyridoxal 5'-phosphate cofactor of various enzymes causing inactivation. This damage is pre-empted by RidA proteins, which hydrolyze the imines before they do harm. RidA proteins belong to the YjgF/YER057c/UK114 family (here renamed the Rid family). Most other members of this diverse and ubiquitous family lack defined functions. RESULTS: Phylogenetic analysis divided the Rid family into a widely distributed, apparently archetypal RidA subfamily and seven other subfamilies (Rid1 to Rid7) that are largely confined to bacteria and often co-occur in the same organism with RidA and each other. The Rid1 to Rid3 subfamilies, but not the Rid4 to Rid7 subfamilies, have a conserved arginine residue that, in RidA proteins, is essential for imine-hydrolyzing activity. Analysis of the chromosomal context of bacterial RidA genes revealed clustering with genes for threonine dehydratase and other pyridoxal 5'-phosphate-dependent enzymes, which fits with the known RidA imine hydrolase activity. Clustering was also evident between Rid family genes and genes specifying FAD-dependent amine oxidases or enzymes of carbamoyl phosphate metabolism. Biochemical assays showed that Salmonella enterica RidA and Rid2, but not Rid7, can hydrolyze imines generated by amino acid oxidase. Genetic tests indicated that carbamoyl phosphate overproduction is toxic to S. enterica cells lacking RidA, and metabolomic profiling of Rid knockout strains showed ten-fold accumulation of the carbamoyl phosphate-related metabolite dihydroorotate. CONCLUSIONS: Like the archetypal RidA subfamily, the Rid2, and probably the Rid1 and Rid3 subfamilies, have imine-hydrolyzing activity and can pre-empt damage from imines formed by amine oxidases as well as by pyridoxal 5'-phosphate enzymes. The RidA subfamily has an additional damage pre-emption role in carbamoyl phosphate metabolism that has yet to be biochemically defined. Finally, the Rid4 to Rid7 subfamilies appear not to hydrolyze imines and thus remain mysterious.


Subject(s)
Bacterial Proteins/metabolism , Genomics , Mitochondrial Proteins/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Carbamyl Phosphate/metabolism , Hydrolysis , Imines/metabolism , Metabolomics , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/genetics , Models, Molecular , Molecular Sequence Data , Oxidoreductases/metabolism , Phylogeny , Protein Conformation , Salmonella enterica/classification , Salmonella enterica/genetics , Salmonella enterica/metabolism , Terminology as Topic
5.
Mol Plant Microbe Interact ; 19(1): 69-79, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16404955

ABSTRACT

An 8x draft genome was obtained and annotated for Ralstonia solanacearum race 3 biovar 2 (R3B2) strain UW551, a United States Department of Agriculture Select Agent isolated from geranium. The draft UW551 genome consisted of 80,169 reads resulting in 582 contigs containing 5,925,491 base pairs, with an average 64.5% GC content. Annotation revealed a predicted 4,454 protein coding open reading frames (ORFs), 43 tRNAs, and 5 rRNAs; 2,793 (or 62%) of the ORFs had a functional assignment. The UW551 genome was compared with the published genome of R. solanacearum race 1 biovar 3 tropical tomato strain GMI1000. The two phylogenetically distinct strains were at least 71% syntenic in gene organization. Most genes encoding known pathogenicity determinants, including predicted type III secreted effectors, appeared to be common to both strains. A total of 402 unique UW551 ORFs were identified, none of which had a best hit or >45% amino acid sequence identity with any R. solanacearum predicted protein; 16 had strong (E < 10(-13)) best hits to ORFs found in other bacterial plant pathogens. Many of the 402 unique genes were clustered, including 5 found in the hrp region and 38 contiguous, potential prophage genes. Conservation of some UW551 unique genes among R3B2 strains was examined by polymerase chain reaction among a group of 58 strains from different races and biovars, resulting in the identification of genes that may be potentially useful for diagnostic detection and identification of R3B2 strains. One 22-kb region that appears to be present in GMI1000 as a result of horizontal gene transfer is absent from UW551 and encodes enzymes that likely are essential for utilization of the three sugar alcohols that distinguish biovars 3 and 4 from biovars 1 and 2.


Subject(s)
Open Reading Frames/genetics , Ralstonia solanacearum/classification , Ralstonia solanacearum/genetics , Arginine , Genes, Bacterial , Genome, Bacterial/genetics , Multigene Family , Promoter Regions, Genetic , Prophages , Protein Transport , Ralstonia solanacearum/pathogenicity , Sequence Analysis, DNA , Species Specificity , Virulence Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...