Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 14(6)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37374856

ABSTRACT

Semiconductor lasers have developed rapidly with the steady growth of the global laser market. The use of semiconductor laser diodes is currently considered to be the most advanced option for achieving the optimal combination of efficiency, energy consumption, and cost parameters of high-power solid-state and fiber lasers. In this work, an approach for optical mode engineering in planar waveguides is investigated. The approach referred to as Coupled Large Optical Cavity (CLOC) is based on the resonant optical coupling between waveguides and allows the selection of high-order modes. The state-of-art of the CLOC operation is reviewed and discussed. We apply the CLOC concept in our waveguide design strategy. The results in both numerical simulation and experiment show that the CLOC approach can be considered a simple and cost-efficient solution for improving diode laser performance.

2.
Materials (Basel) ; 13(10)2020 May 18.
Article in English | MEDLINE | ID: mdl-32443456

ABSTRACT

An InAs/InGaAs quantum dot laser with a heterostructure epitaxially grown on a silicon substrate was used to fabricate injection microdisk lasers of different diameters (15-31 µm). A post-growth process includes photolithography and deep dry etching. No surface protection/passivation is applied. The microlasers are capable of operating heatsink-free in a continuous-wave regime at room and elevated temperatures. A record-low threshold current density of 0.36 kA/cm2 was achieved in 31 µm diameter microdisks operating uncooled. In microlasers with a diameter of 15 µm, the minimum threshold current density was found to be 0.68 kA/cm2. Thermal resistance of microdisk lasers monolithically grown on silicon agrees well with that of microdisks on GaAs substrates. The ageing test performed for microdisk lasers on silicon during 1000 h at a constant current revealed that the output power dropped by only ~9%. A preliminary estimate of the lifetime for quantum-dot (QD) microlasers on silicon (defined by a double drop of the power) is 83,000 h. Quantum dot microdisk lasers made of a heterostructure grown on GaAs were transferred onto a silicon wafer using indium bonding. Microlasers have a joint electrical contact over a residual n+ GaAs substrate, whereas their individual addressing is achieved by placing them down on a p-contact to separate contact pads. These microdisks hybridly integrated to silicon laser at room temperature in a continuous-wave mode. No effect of non-native substrate on device characteristics was found.

3.
Nanoscale Res Lett ; 9(1): 3266, 2014 Dec.
Article in English | MEDLINE | ID: mdl-26264786

ABSTRACT

Ultrasmall microring and microdisk lasers with an asymmetric air/GaAs/Al0.98Ga0.02As waveguide and an active region based on InAs/InGaAs/GaAs quantum dots emitting around 1.3 µm were fabricated and studied. The diameter D of the microrings and microdisks was either 2 or 1.5 µm, and the inner diameter d of the microrings varied from 20% to 70% of the outer diameter D. The microring with D = 2 µm and d = 0.8 µm demonstrated a threshold pump power as low as 1.8 µW at room temperature. Lasing was observed up to 100°C owing to the use of quantum dots providing high confinement energy both for electrons and holes. Tuning spectral positions of the whispering gallery modes via changing the inner diameters of the microrings was demonstrated. PACS: 78.67.Hc; 42.55.Sa; 42.50.Pq; 78.55.Cr.

SELECTION OF CITATIONS
SEARCH DETAIL
...