Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 11(36): 16886-16895, 2019 Sep 19.
Article in English | MEDLINE | ID: mdl-31483415

ABSTRACT

The first observation of liquid crystalline dispersions of liquid phase-exfoliated tungsten disulfide flakes is reported in a range of organic solvents. The liquid crystals demonstrate significant birefringence as observed in the linear and circular dichroism measurements respectively. In particular, linear dichroism is observed throughout the visible range while broad-band circular dichroism can be observed in the range from 500-800 nm. Under an applied magnetic field of ±1.5 T the circular dichroism can be switched ON/OFF, while the wavelength range for switching can be tuned from large to narrow range by the proper selection of the host solvent. In combination with photoluminescence capabilities of WS2, this opens a pathway to a wide variety of applications, such as deposition of highly uniform films over large areas for photovoltaic and terahertz devices.

2.
Nanoscale Res Lett ; 14(1): 225, 2019 Jul 09.
Article in English | MEDLINE | ID: mdl-31289955

ABSTRACT

Time-resolved terahertz spectroscopy has become a common method both for fundamental and applied studies focused on improving the quality of human life. However, the issue of finding materials applicable in these systems is still relevant. One of the appropriate solution is 2D materials. Here, we demonstrate the transmission properties of unique graphene-based structures with iron trichloride FeCl3 dopant on glass, sapphire and Kapton polyimide film substrates that previously were not investigated in the framework of the above-described problems in near infrared and THz ranges. We also show properties of a thin tungsten disulfide WS2 film fabricated from liquid crystal solutions transferred to a polyimide and polyethylene terephthalate substrates. The introduction of impurities, the selection of structural dimensions and the use of an appropriate substrate for modified 2D layered materials allow to control the transmission of samples for both the terahertz and infrared ranges, which can be used for creation of effective modulators and components for THz spectroscopy systems.

3.
Opt Express ; 27(8): 10419-10425, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-31052901

ABSTRACT

The values of the nonlinear refractive index coefficient for various materials in the terahertz frequency range exceed the ones in both visible and NIR ranges by several orders of magnitude. This allows to create nonlinear switches, modulators, systems requiring lower control energies in the terahertz frequency range. We report the direct measurement of the nonlinear refractive index coefficient of liquid water by using the Z-scan method with broadband pulsed THz beam. Our experimental result shows that nonlinear refractive index coefficient in water is positive and can be as large as 7×10-10 cm2/W in the THz frequency range, which exceeds the values for the visible and NIR ranges by 6 orders of magnitude. To estimate n2, we use the theoretical model that takes into account ionic vibrational contribution to the third-order susceptibility. We show that the origins of the nonlinearity observed are the anharmonicity of molecular vibrations.

SELECTION OF CITATIONS
SEARCH DETAIL
...