Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Biomedicines ; 10(8)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36009557

ABSTRACT

Among neurological adverse reactions in patients with schizophrenia treated with antipsychotics (APs), drug-induced parkinsonism (DIP) is the most common motility disorder caused by drugs affecting dopamine receptors. One of the causes of DIP is the disruption of neurotransmitter interactions that regulate the signaling pathways of the dopaminergic, cholinergic, GABAergic, adenosinergic, endocannabinoid, and other neurotransmitter systems. Presently, the development mechanisms remain poorly understood despite the presence of the considered theories of DIP pathogenesis.

2.
Nutrients ; 13(11)2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34836059

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is an incurable chronic progressive neurodegenerative disease with the progressive degeneration of motor neurons in the motor cortex and lower motor neurons in the spinal cord and the brain stem. The etiology and pathogenesis of ALS are being actively studied, but there is still no single concept. The study of ALS risk factors can help to understand the mechanism of this disease development and, possibly, slow down the rate of its progression in patients and also reduce the risk of its development in people with a predisposition toward familial ALS. The interest of researchers and clinicians in the protective role of nutrients in the development of ALS has been increasing in recent years. However, the role of some of them is not well-understood or disputed. The objective of this review is to analyze studies on the role of nutrients as environmental factors affecting the risk of developing ALS and the rate of motor neuron degeneration progression. METHODS: We searched the PubMed, Springer, Clinical keys, Google Scholar, and E-Library databases for publications using keywords and their combinations. We analyzed all the available studies published in 2010-2020. DISCUSSION: We analyzed 39 studies, including randomized clinical trials, clinical cases, and meta-analyses, involving ALS patients and studies on animal models of ALS. This review demonstrated that the following vitamins are the most significant protectors of ALS development: vitamin B12, vitamin E > vitamin C > vitamin B1, vitamin B9 > vitamin D > vitamin B2, vitamin B6 > vitamin A, and vitamin B7. In addition, this review indicates that the role of foods with a high content of cholesterol, polyunsaturated fatty acids, urates, and purines plays a big part in ALS development. CONCLUSION: The inclusion of vitamins and a ketogenic diet in disease-modifying ALS therapy can reduce the progression rate of motor neuron degeneration and slow the rate of disease progression, but the approach to nutrient selection must be personalized. The roles of vitamins C, D, and B7 as ALS protectors need further study.


Subject(s)
Amyotrophic Lateral Sclerosis/physiopathology , Motor Neurons/physiology , Nutrients/metabolism , Nutritional Physiological Phenomena/physiology , Amyotrophic Lateral Sclerosis/etiology , Animals , Diet/adverse effects , Disease Models, Animal , Disease Progression , Humans , Nutrients/deficiency , Risk Factors
3.
J Pharm Pharm Sci ; 21(1): 340-346, 2018.
Article in English | MEDLINE | ID: mdl-30075828

ABSTRACT

PURPOSE: Parkinson's disease (PD), a common neurodegenerative disorder, is usually treated with Levodopa (L-DOPA). The use of this drug, however, is severely limited by the development of side effects of the motor system: Levodopa-induced dyskinesia (LID). The aim of this study is to investigate the association between seven COMT gene single-nucleotide polymorphisms (SNPs) and the development of LID in patients with PD. METHODS: 232 Caucasian patients with PD were investigated. 212 patients with PD received Levodopa therapy. Dyskinesia was assessed with the use of the Abnormal Involuntary Movement Scale (AIMS).  Genotyping was carried out on seven SNPs of the COMT gene (rs4680, rs6269, rs4633, rs4818, rs769224, rs165774, rs174696) using a real-time PCR method, and blind to the clinical status of the subjects. RESULTS: We found association between four SNPs, rs165774, rs4818, rs4633, rs4680, and LID. When the duration of disease was added as a covariate in regression analysis, however, the results did not reach statistical significance. Only the additive model for rs165774 was found to be close to be statistical significance (OR = 1.627 [0.976-2.741], permutation p = 0.057). CONCLUSIONS: The results failed to clearly support a contribution of the studied polymorphisms; this may be related to a dominant relationship with the disease duration confounding the effect on the prevalence of LID.


Subject(s)
Antiparkinson Agents/adverse effects , Catechol O-Methyltransferase/genetics , Dyskinesia, Drug-Induced/genetics , Levodopa/adverse effects , Parkinson Disease/drug therapy , Polymorphism, Single Nucleotide/genetics , Adult , Aged , Aged, 80 and over , Antiparkinson Agents/therapeutic use , Dyskinesia, Drug-Induced/enzymology , Dyskinesia, Drug-Induced/prevention & control , Female , Humans , Levodopa/therapeutic use , Male , Middle Aged , Parkinson Disease/enzymology , Parkinson Disease/genetics , Regression Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...