Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Model ; 26(11): 326, 2020 Nov 02.
Article in English | MEDLINE | ID: mdl-33140163

ABSTRACT

DFT (VASP) and semi-empirical (HyperChem) calculations for the L- and D-chiral diphenylalanine (L-FF and D-FF) nanotube (PNT) structures, empty and filled with water/ice clusters, are presented and analyzed. The results obtained show that after optimization, the dipole moment and polarization of both chiral type L-FF and D-FF PNT and embedded water/ice cluster are enhanced; the water/ice cluster acquire the helix-like structure similar as L-FF and D-FF PNT. Ferroelectric properties of tubular water/ice helix-like-cluster obtained after optimization inside L-FF and D-FF PNT and total L-FF and D-FF PNT with embedded water/ice cluster are discussed.


Subject(s)
Computer Simulation , Models, Molecular , Nanotubes, Peptide/chemistry , Water/chemistry , Hydrophobic and Hydrophilic Interactions , Phenylalanine/chemistry , Thermodynamics
2.
Nanomaterials (Basel) ; 10(10)2020 Oct 10.
Article in English | MEDLINE | ID: mdl-33050446

ABSTRACT

The structures and properties of the diphenylalanine (FF) peptide nanotubes (PNTs), both L-chiral and D-chiral (L-FF and D-FF) and empty and filled with water/ice clusters, are presented and analyzed. DFT (VASP) and semi-empirical calculations (HyperChem) to study these structural and physical properties of PNTs (including ferroelectric) were used. The results obtained show that after optimization the dipole moment and polarization of both chiral type L-FF and D-FF PNT and embedded water/ice cluster are enhanced; the water/ice cluster acquire the helix-like structure similar as L-FF and D-FF PNT. Ferroelectric properties of tubular water/ice helix-like cluster, obtained after optimization inside L-FF and D-FF PNT, as well of the total L-FF and D-FF PNT with embedded water/ice cluster, are discussed.

3.
J Mol Model ; 25(7): 199, 2019 Jun 25.
Article in English | MEDLINE | ID: mdl-31240406

ABSTRACT

The structure and properties of diphenylalanine (FF) peptide nanotubes (PNT) based on phenylalanine were investigated by various molecular modeling methods. The main approach employed semi-empirical quantum-chemical methods (PM3 and AM1). Ab initio, density functional theory methods and molecular mechanical approaches were also used. Both model structures and structures extracted from experimental crystallographic databases obtained by X-ray methods were examined. A comparison of optimized model structures and structures obtained by natural self-assembly revealed important differences depending on chirality: D and L. In both the cases, the effect of chirality on the results of self-assembly of FF PNT was established: PNT based on the D-FF has large condensation energy E0 in the transverse direction, and form thicker and shorter PNT bundles than those based on L-FF. A topological difference was established: model PNT were optimized into structures consisting of rings, while naturally self-assembled PNT consisted of helical turns. The latter nanotubes differed from the original L-FF and D-FF and formed helix structures of different chirality signs in accordance with the alternation rule of chirality due to macromolecule hierarchy. A topological transition between ring and helix turn PNT structures is discussed: self-assembled natural helix structures are favorable and their energy is lower by a value of the order of one to several eV.


Subject(s)
Models, Molecular , Molecular Conformation , Nanotubes, Peptide/chemistry , Phenylalanine/analogs & derivatives , Algorithms , Density Functional Theory , Dipeptides , Models, Theoretical , Nanostructures/chemistry , Phenylalanine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...