Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
Heliyon ; 10(10): e31236, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38803853

ABSTRACT

A γ-aminobutyric acid (GABA)-producing strain JC30 was isolated from traditional kimchi, which was identified as Pediococcus pentosaceus by 16S rDNA sequencing. P. pentosaceus JC30 was highly tolerant to acid, bile salt, and high temperatures. The survival rate of JC30 in MRS medium (pH 2.5) for 3 h was 60.96 %. Furthermore, the survival rate of JC30 in MRS medium with 3 mg/mL bile salt for 24 h was 86.62 %. The survival rate of JC30 in MRS medium at 56 °C and 58 °C for 10 min was 97.17 % and 78.20 %, respectively. When 2 % v/v JC30 (8.0 log10 CFU/mL) was added to prepare sourdough and the sourdough was then used to make bread, the bread had a higher specific volume (5.13 ± 0.12 mL/g) and GABA content (3.32 ± 0.04 mg/g DW) than the control.

2.
PLoS One ; 19(4): e0300473, 2024.
Article in English | MEDLINE | ID: mdl-38635663

ABSTRACT

High-resolution imagery and deep learning models have gained increasing importance in land-use mapping. In recent years, several new deep learning network modeling methods have surfaced. However, there has been a lack of a clear understanding of the performance of these models. In this study, we applied four well-established and robust deep learning models (FCN-8s, SegNet, U-Net, and Swin-UNet) to an open benchmark high-resolution remote sensing dataset to compare their performance in land-use mapping. The results indicate that FCN-8s, SegNet, U-Net, and Swin-UNet achieved overall accuracies of 80.73%, 89.86%, 91.90%, and 96.01%, respectively, on the test set. Furthermore, we assessed the generalization ability of these models using two measures: intersection of union and F1 score, which highlight Swin-UNet's superior robustness compared to the other three models. In summary, our study provides a systematic analysis of the classification differences among these four deep learning models through experiments. It serves as a valuable reference for selecting models in future research, particularly in scenarios such as land-use mapping, urban functional area recognition, and natural resource management.


Subject(s)
Deep Learning , Remote Sensing Technology , Benchmarking , Generalization, Psychological , Imagery, Psychotherapy
3.
Front Oncol ; 14: 1286426, 2024.
Article in English | MEDLINE | ID: mdl-38571492

ABSTRACT

Familial non-medullary thyroid carcinoma (FNMTC) is a type of thyroid cancer characterized by genetic susceptibility, representing approximately 5% of all non-medullary thyroid carcinomas. While some cases of FNMTC are associated with familial multi-organ tumor predisposition syndromes, the majority occur independently. The genetic mechanisms underlying non-syndromic FNMTC remain unclear. Initial studies utilized SNP linkage analysis to identify susceptibility loci, including the 1q21 locus, 2q21 locus, and 4q32 locus, among others. Subsequent research employed more advanced techniques such as Genome-wide Association Study and Whole Exome Sequencing, leading to the discovery of genes such as IMMP2L, GALNTL4, WDR11-AS1, DUOX2, NOP53, MAP2K5, and others. But FNMTC exhibits strong genetic heterogeneity, with each family having its own pathogenic genes. This is the first article to provide a chromosomal landscape map of susceptibility genes associated with non-syndromic FNMTC and analyze their potential associations. It also presents a detailed summary of variant loci, characteristics, research methodologies, and validation results from different countries.

4.
Org Lett ; 26(13): 2623-2628, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38522081

ABSTRACT

An efficient dearomative cyclization of 2-nitrobenzofurans via a thiol-triggered tandem Michael addition/intramolecular Henry reaction has been developed. A range of thiochromeno[3,2-b]benzofuran-11-ols and tetrahydrothieno[3,2-b]benzofuran-3-ols could be obtained in up to 99% yield and up to >20:1 dr. The valuable thiochromone fused benzofurans could be prepared with the reaction of 2-nitrobenzofurans and 2-mercaptobenzaldehyde via the tandem dearomative Michael addition/intramolecular Henry reaction/rearomatization/oxidative dehydrogenation process in a one-pot two-step operation. A mechanism for the reaction was tentatively proposed.

5.
Thyroid ; 34(5): 583-597, 2024 May.
Article in English | MEDLINE | ID: mdl-38411500

ABSTRACT

Background: Familial non-medullary thyroid carcinoma (FNMTC) is a genetically predisposed disease with unclear genetic mechanisms. This makes research on susceptibility genes important for the diagnosis and treatment options. Methods: This study included a five-member family affected by papillary thyroid carcinoma. The candidate genes were identified through whole-exome sequencing and Sanger sequencing in family members, other FNMTC patients, and sporadic non-medullary thyroid carcinoma patients. The pathogenicity of the mutation was predicted using in silico tools. Cell phenotype experiments in vitro and models of lung distant metastasis in vivo were conducted to confirm the characteristics of the mutation. Transcriptome sequencing and mechanistic validation were employed to compare the disparities between PAK4 wild-type (WT) and PAK4 mutant (MUT) cell lines. Results: This mutation alters the protein structure, potentially increasing instability by affecting hydrophobicity, intra-molecular hydrogen bonding, and phosphorylation sites. It specifically promotes phosphorylated PAK4 nuclear translocation and expression in thyroid tissue and cell lines. Compared with the WT cells line, PAK4 I417T demonstrates enhanced proliferation, invasiveness, accelerated cell division, and inhibition of cell apoptosis in vitro. In addition, it exhibits a significant propensity for metastasis in vivo. It activates tumor necrosis factor signaling through increased phosphorylation of PAK4, JNK, NFκB, and c-Jun, unlike the WT that activates it via the PAK4-NFκ-MMP9 axis. In addition, PAK4 MUT protein interacts with matrix metalloproteinase (MMP)3 and regulates MMP3 promoter activity, which is not observed in the WT. Conclusions: Our study identified PAK4: c.T1250C: p.I417T as a potential susceptibility gene for FNMTC. The study concludes that the mutant form of PAK4 exhibits oncogenic function, suggesting its potential as a novel diagnostic molecular marker for FNMTC.


Subject(s)
Genetic Predisposition to Disease , Mutation , Thyroid Cancer, Papillary , Thyroid Neoplasms , p21-Activated Kinases , Humans , p21-Activated Kinases/genetics , p21-Activated Kinases/metabolism , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/metabolism , Female , Male , Cell Line, Tumor , Animals , Pedigree , Cell Proliferation , Adult , Apoptosis , Exome Sequencing , Middle Aged , Mice
6.
Front Endocrinol (Lausanne) ; 14: 1282088, 2023.
Article in English | MEDLINE | ID: mdl-38093963

ABSTRACT

Background: Current guidelines lack a standardized management for patients with family history of thyroid carcinoma (fTC),particularly benign thyroid neoplasm (fBTN). Our objective was to investigate the influence of various family histories on the selection of surgical approaches and disease-free survival (DFS). Methods: A cohort study was conducted involving 2261 patients diagnosed with differentiated thyroid carcinoma including those with fTC (n=224), fBTN (n=122), and individuals without a family history of thyroid carcinoma (nfTC; n=1915). Clinicopathological characteristics were collected. DFS was estimated using Kaplan-Meier analysis and factors affecting DFS were identified using Cox proportional hazard model. Results: Compared to nfTC, small tumor size, clinically lymph node-positive, extrathyroidal extension, vascular invasion, Hashimoto's disease and nodular goiter were more common in fTC and fBTN groups. They had lower T stage and a lower rate of good response to TSH suppression therapy but received more radioiodine therapy. It is worth noting that fTC is associated with male, bilateral and multifocal tumors, as well as central lymph node metastasis and distant metastasis. Both fTC (aHR = 2.45, 95% CI=1.11-5.38; P = 0.03) and fBTN (aHR = 3.43, 95% CI=1.27-9.29; P = 0.02) were independent predictors of DFS in patients who underwent lobectomy, but not total thyroidectomy. For 1-4 cm thyroid carcinomas with clinically node-negative, fTC was identified as an independent predictor, whereas fBTN was not. Conclusion: Our findings indicate that a family history, particularly of malignancy, is associated with a more aggressive disease. Family history does not affect the prognosis of patients who undergo total thyroidectomy, but it may increase the risk of postoperative malignant events in those who have a lobectomy. Additionally, it may be necessary to monitor individuals with a family history of benign thyroid neoplasms.


Subject(s)
Adenoma, Oxyphilic , Thyroid Neoplasms , Humans , Male , Disease-Free Survival , Cohort Studies , Iodine Radioisotopes , Retrospective Studies , Thyroid Neoplasms/genetics , Thyroid Neoplasms/surgery , Thyroid Neoplasms/diagnosis
7.
Arch Med Sci ; 19(6): 1709-1713, 2023.
Article in English | MEDLINE | ID: mdl-38058701

ABSTRACT

Introduction: The present study was conducted to explore the expression of serum inflammatory cytokines and oxidative stress markers in patients with coronary heart disease (CHD), with an attempt to analyze their relationship with the coronary artery calcium score (CACS) by coronary computed tomography angiography (CCTA). Material and methods: It total 81 patients with coronary heart disease and 81 healthy adults were included as the observation group and the control group, respectively. The levels of serum interleukin (IL)-6 and IL-12 of the two groups were detected by ELISA, and serum superoxide dismutase (SOD) was detected by the hydroxylamine oxidation method. Micro-RNA-497-5p (miR-497-5p) was screened out as a possible new CHD biomarker and its serum level was measured by real-time fluorescence quantitative PCR. The CACS of patients in the observation group was calculated by the Agatston method to analyze the correlation between the abovementioned indexes and CACS. Results: With increase in the number of CHD lesions, the levels of IL-6, IL-12 and miR-497-5p rose gradually while the level of SOD decreased gradually. In the observation group, IL-6, IL-12 and miR-497-5p were positively correlated with CACS while SOD was negatively correlated with CACS. Conclusions: Abnormal expression levels of serum IL-6, IL-12, SOD and miR-497-5p may be able to reveal the severity of the disease, and the combination with CACS is of potential value in terms of evaluating the condition of patients harboring coronary heart disease.

8.
Sci Rep ; 13(1): 15177, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37704718

ABSTRACT

The demand for energy plants is foreseen to grow as worldwide energy and climate policies promote the use of bioenergy for climate change mitigation. To avoid competing with food production, it's critical to assess future changes in marginal land availability for energy plant development. Using a machine learning method, boosted regression tree, this study modeled potential marginal land resources suitable for cassava under current and different climate change scenarios, based on cassava occurrence records and environmental covariates. The findings revealed that, currently, over 80% of the 1357.24 Mha of available marginal land for cassava cultivation is distributed in Africa and South America. Under three climate change scenarios, by 2030, worldwide suitable marginal land resources were predicted to grow by 39.71Mha, 66.21 Mha, and 39.31Mha for the RCP4.5, RCP6.0, and RCP8.5 scenarios, respectively; by 2050, the potential marginal land suitable for cassava will increase by 38.98Mha, 83.02 Mha, and 55.43Mha, respectively; by 2080, the global marginal land resources were estimated to rise by 40.82 Mha, 99.74 Mha, and 21.87 Mha from now, respectively. Our results highlight the impacts of climate change on potential marginal land resources of cassava across worldwide, which provide the basis for assessing bioenergy potential in the future.

9.
medRxiv ; 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37398349

ABSTRACT

Objective: Clear criteria to individualize glycemic targets are lacking. In this post-hoc analysis of the Action to Control Cardiovascular Risk in Diabetes trial (ACCORD), we evaluate whether the kidney failure risk equation (KFRE) can identify patients who disproportionately benefit from intensive glycemic control on kidney microvascular outcomes. Research design and methods: We divided the ACCORD trial population in quartiles based on 5-year kidney failure risk using the KFRE. We estimated conditional treatment effects within each quartile and compared them to the average treatment effect in the trial. The treatment effects of interest were the 7-year restricted-mean-survival-time (RMST) differences between intensive and standard glycemic control arms on (1) time-to-first development of severely elevated albuminuria or kidney failure and (2) all-cause mortality. Results: We found evidence that the effect of intensive glycemic control on kidney microvascular outcomes and all-cause mortality varies with baseline risk of kidney failure. Patients with elevated baseline risk of kidney failure benefitted the most from intensive glycemic control on kidney microvascular outcomes (7-year RMST difference of 115 v. 48 days in the entire trial population) However, this same patient group also experienced shorter times to death (7-year RMST difference of -57 v. -24 days). Conclusions: We found evidence of heterogenous treatment effects of intensive glycemic control on kidney microvascular outcomes in ACCORD as a function of predicted baseline risk of kidney failure. Patients with higher kidney failure risk experienced the most pronounced benefits of treatment on kidney microvascular outcomes but also experienced the highest risk of all-cause mortality.

10.
Neuropsychopharmacology ; 48(8): 1164-1174, 2023 07.
Article in English | MEDLINE | ID: mdl-36797374

ABSTRACT

Pharmacological manipulation of mGluR5 has showed that mGluR5 is implicated in the pathophysiology of anxiety and mGluR5 has been proposed as a potential drug target for anxiety disorders. Nevertheless, the mechanism underlying the mGluR5 involvement in stress-induced anxiety-like behavior remains largely unknown. Here, we found that chronic restraint stress induced anxiety-like behavior and decreased the expression of mGluR5 in hippocampal CA1. Specific knockdown of mGluR5 in hippocampal CA1 pyramidal neurons produced anxiety-like behavior. Furthermore, both chronic restraint stress and mGluR5 knockdown impaired inhibitory synaptic inputs in hippocampal CA1 pyramidal neurons. Notably, positive allosteric modulator of mGluR5 rescued stress-induced anxiety-like behavior and restored the inhibitory synaptic inputs. These findings point to an essential role for mGluR5 in hippocampal CA1 pyramidal neurons in mediating stress-induced anxiety-like behavior.


Subject(s)
Hippocampus , Pyramidal Cells , Hippocampus/metabolism , Pyramidal Cells/physiology , Anxiety/drug therapy , CA1 Region, Hippocampal
11.
Chin Med ; 17(1): 143, 2022 Dec 24.
Article in English | MEDLINE | ID: mdl-36566207

ABSTRACT

BACKGROUND AND AIM: Chuanxiong Renshen decoction (CRD) is a traditional Chinese medicine compound used to treat Alzheimer's disease (AD). However, the effects and active ingredients of CRD and its mechanism have not been clarified. We aimed to determine the neuroprotective effects of CRD in a triple-transgenic mouse model of AD (3 × Tg-AD) and investigate the possible active ingredients and their mechanisms. METHODS: Morris water maze (MWM) tests were used to determine the protective effect of CRD on learning and memory ability. Afterward, we used brain tissue staining, immunofluorescent staining and western blotting to detect the neuroprotective effects of CRD. Ultraperformance liquid-chromatography-quadrupole-time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS) was applied to determine the ingredients of CRD, and the potential AD targets were obtained from DisGeNET and the GeneCards database. The protein‒protein interaction (PPI) network was built with the additional use of STRING 11.0. Metascape was used in the pathway enrichment analysis. Discovery Studio 2016 (DS) software was used to analyze the binding ability of CRD and AD-related genes. Finally, we verified the regulatory effect of CRD on the predicted core targets EGFR and CASP3 by western blotting. RESULTS: Our study indicated that CRD can significantly improve learning and memory, reduce the expression of Aß and protect neurons. A total of 95 ingredients were identified in the CRD. Then, 25 ingredients were identified in serum, and 5 ingredients were identified in the brain tissue homogenate. PPI network analysis identified CASP3, EGFR, APP, CNR1, HIF1A, PTGS2 and MTOR as hub targets. KEGG and GO analyses revealed that the TNF signaling pathway and MAPK signaling pathway were enriched in multiple targets. The results of molecular docking proved that the binding of the ingredients with potential key targets was excellent. The western blotting results showed that CRD could significantly reduce the expression of CASP3 and EGFR in the hippocampus of 3 × Tg-AD mice. Combined with literature analysis, we assumed the neuroprotective effect of CRD on AD may occur through regulation of the MAPK signaling pathway. CONCLUSION: CRD significantly alleviated injury in 3 × Tg-AD mice. The possible active ingredients are ferulic acid, rutin, ginsenoside Rg1 and panaxydol. The therapeutic effect of CRD on AD is achieved through the downregulation of CASP3 and EGFR. The neuroprotective effect of CRD on AD may occur through regulation of the MAPK signaling pathway.

12.
Materials (Basel) ; 15(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36363190

ABSTRACT

Metal powder bed fusion (PBF) is an advanced metal additive manufacturing (AM) technology. Compared with traditional manufacturing techniques, PBF has a higher degree of design freedom. Currently, although PBF has received extensive attention in fields with high-quality standards such as aerospace and automotive, there are some disadvantages, namely poor process quality and insufficient stability, which make it difficult to apply the technology to the manufacture of critical components. In order to surmount these limitations, it is necessary to monitor the process. Online monitoring technology can detect defects in time and provide certain feedback control, so it can greatly enhance the stability of the process, thereby ensuring its quality of the process. This paper presents the current status of online monitoring technology of the metal PBF process from the aspects of powder recoating monitoring, powder bed inspection, building process monitoring, and melt layer detection. Some of the current limitations and future trends are then highlighted. The combination of these four-part monitoring methods can make the quality of PBF parts highly assured. We unanimously believe that this article can be helpful for future research on PBF process monitoring.

13.
Article in English | MEDLINE | ID: mdl-36276846

ABSTRACT

Cancer is a complex disease with several distinct characteristics, referred to as "cancer markers" one of which is metabolic reprogramming, which is a common feature that drives cancer progression. Over the last ten years, researchers have focused on the reprogramming of glucose metabolism in cancer. In cancer, the oxidative phosphorylation metabolic pathway is converted into the glycolytic pathway in order to meet the growth requirements of cancer cells, thereby creating a microenvironment that promotes cancer progression. The precise mechanism of glucose metabolism in cancer cells is still unknown, but it is thought to involve the aberrant levels of metabolic enzymes, the influence of the tumor microenvironment (TME), and the activation of tumor-promoting signaling pathways. It is suggested that glucose metabolism is strongly linked to cancer progression because it provides energy to cancer cells and interferes with antitumor drug pharmacodynamics. Therefore, it is critical to unravel the mechanism of glucose metabolism in tumors in order to gain a better understanding of tumorigenesis and to lay the groundwork for future research into the identification of novel diagnostic markers and therapeutic targets for cancer treatment. Traditional Chinese Medicine (TCM) has the characteristics of multiple targets, multiple components, and less toxic side effects and has unique advantages in tumor treatment. In recent years, researchers have found that a variety of Chinese medicine monomers and compound recipes play an antitumor role by interfering with the reprogramming of tumor metabolism. The underlying mechanisms of metabolism reprogramming of tumor cells and the role of TCM in regulating glucose metabolism are reviewed in this study, so as to provide a new idea for antitumor research in Chinese medicine.

14.
Front Immunol ; 13: 913667, 2022.
Article in English | MEDLINE | ID: mdl-35844610

ABSTRACT

Background: Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a multisystem autoimmune disease with small-vessel involvement. In AAV, microscopic polyangiitis (MPA) and granulomatosis with polyangiitis (GPA) are major clinicopathologic variants. In addition, myeloperoxidase (MPO) and proteinase 3 (PR3) are major target antigens. The objective of the study was to explore the predictive factors for long-term survival in AAV patients. Materials and Methods: A multicenter retrospective study was carried out on 407 patients between 2005 and 2020. Clinical parameters were obtained from laboratory tests including the ANCA types, antinuclear antibody (ANA), extractable nuclear antigen (ENA), anti-streptolysin O (ASO), glomerular filtration rate (GFR), and the laboratory examinations for the blood routine, liver function, renal function, and immunity, etc. The data for clinical parameters were collected from electronic medical records (EMRs), and the data for patient survival were acquired through regular follow-up. The association of clinical parameters with overall survival (OS) along with 3-year and 5-year survival rates was analyzed, and the nomogram as a predictive model was established according to the analysis results. Results: In the present study, 336 (82.6%) patients and 46 (11.3%) patients were diagnosed with MPA and GPA, respectively. The mean and median OS for all the patients were 2,285 and 2,290 days, respectively. The 1-year, 3-year, 5-year, and 10-year cumulative survival rates for all the patients were 84.2%, 76.3%, 57.2%, and 32.4%, respectively. Univariate and multivariate survival analyses indicated that the independent prognostic factors included age, pathological categories (MPA, GPA, and other types), serum ANCA types (negative or positive for MPO and/or PR3), ANA, ASO, GFR, lymphocyte, neutrophil-to-lymphocyte ratio (NLR), and C-reactive protein (CRP), and these clinical parameters except for ASO were used to construct a nomogram. The nomogram for 3-year and 5-year survival rates had a C-index of 0.721 (95% CI 0.676-0.766). The calibration curves showed that the predicted values of the nomogram for 3-year and 5-year survival rates were generally consistent with practical observed values, and decision curve analysis (DCA) further demonstrated the practicability and accuracy of the predictive model. Conclusion: Laboratory tests at diagnosis have great significance in the prediction of long-term survival in AAV patients.


Subject(s)
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis , Granulomatosis with Polyangiitis , Microscopic Polyangiitis , Antibodies, Antineutrophil Cytoplasmic , Humans , Myeloblastin , Prognosis , Retrospective Studies
15.
Front Nutr ; 9: 900718, 2022.
Article in English | MEDLINE | ID: mdl-35662930

ABSTRACT

To improve the functional properties of mulberry leaves, γ-aminobutyric acid (GABA) enrichment treatments were applied. The results showed that the combined treatment of sodium glutamate immersion, cold shock, and anoxic significantly increased the GABA content. HPLC analysis displayed that the quantity of some active phenolics was significantly increased after the treatment. The GABA-enriched mulberry leaf powders were subsequently prepared, and it was found that as the particle size decreased, their water and oil holding capacity and their swelling power decreased, while the angle of repose increased. The dissolution rate of GABA and total phenolics increased as the particle size decreased. Optical observations and SEM results revealed that the fiber structures of the particles were gradually destroyed as the particle size decreased. Further, FTIR analysis showed that the active compounds in the powders were not destroyed. M400 and M140 powder showed the maximum DPPH radical scavenging ability and AGEs inhibition capacity, respectively. Additionally, adding the powders effectively alleviated the staling of bread without any significant effect on taste.

17.
BMC Bioinformatics ; 23(1): 176, 2022 May 12.
Article in English | MEDLINE | ID: mdl-35550010

ABSTRACT

BACKGROUND: Disease detection is an important aspect of biotherapy. With the development of biotechnology and computer technology, there are many methods to detect disease based on single biomarker. However, biomarker does not influence disease alone in some cases. It's the interaction between biomarkers that determines disease status. The existing influence measure I-score is used to evaluate the importance of interaction in determining disease status, but there is a deviation about the number of variables in interaction when applying I-score. To solve the problem, we propose a new influence measure Multivariate Gain Ratio (MGR) based on Gain Ratio (GR) of single-variate, which provides us with multivariate combination called interaction. RESULTS: We propose a preprocessing verification algorithm based on partial predictor variables to select an appropriate preprocessing method. In this paper, an algorithm for selecting key interactions of biomarkers and applying key interactions to construct a disease detection model is provided. MGR is more credible than I-score in the case of interaction containing small number of variables. Our method behaves better with average accuracy [Formula: see text] than I-score of [Formula: see text] in Breast Cancer Wisconsin (Diagnostic) Dataset. Compared to the classification results [Formula: see text] based on all predictor variables, MGR identifies the true main biomarkers and realizes the dimension reduction. In Leukemia Dataset, the experiment results show the effectiveness of MGR with the accuracy of [Formula: see text] compared to I-score with accuracy [Formula: see text]. The results can be explained by the nature of MGR and I-score mentioned above because every key interaction contains a small number of variables in Leukemia Dataset. CONCLUSIONS: MGR is effective for selecting important biomarkers and biomarker interactions even in high-dimension feature space in which the interaction could contain more than two biomarkers. The prediction ability of interactions selected by MGR is better than I-score in the case of interaction containing small number of variables. MGR is generally applicable to various types of biomarker datasets including cell nuclei, gene, SNPs and protein datasets.


Subject(s)
Breast Neoplasms , Leukemia , Biomarkers , Breast Neoplasms/diagnosis , Female , Humans , Leukemia/diagnosis , Polymorphism, Single Nucleotide
18.
Biol Psychiatry ; 92(3): 179-192, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35489874

ABSTRACT

BACKGROUND: Depression is the most common mental illness. Mounting evidence suggests that dysregulation of extracellular ATP (adenosine triphosphate) is involved in the pathophysiology of depression. However, the cellular and neural circuit mechanisms through which ATP modulates depressive-like behavior remain elusive. METHODS: By use of ex vivo slice electrophysiology, chemogenetic manipulations, RNA interference, gene knockout, behavioral testing, and two depression mouse models, one induced by chronic social defeat stress and one caused by a IP3R2-null mutation, we systematically investigated the cellular and neural circuit mechanisms underlying ATP deficiency-induced depressive-like behavior. RESULTS: Deficiency of extracellular ATP in both defeated susceptible mice and IP3R2-null mutation mice led to reduced GABAergic (gamma-aminobutyric acidergic) inhibition and elevated excitability in lateral habenula-projecting, but not dorsal raphe-projecting, medial prefrontal cortex (mPFC) neurons. Furthermore, the P2X2 receptor in GABAergic interneurons mediated ATP modulation of lateral habenula-projecting mPFC neurons and depressive-like behavior. Remarkably, chemogenetic activation of the mPFC-lateral habenula pathway induced depressive-like behavior in C57BL/6J mice, while inhibition of this pathway was sufficient to alleviate the behavioral impairment in both defeated susceptible and IP3R2-null mutant mice. CONCLUSIONS: Overall, our study provides compelling evidence that ATP level in the mPFC is critically involved in regulating depressive-like behavior in a pathway-specific manner. These results shed new light on the mechanisms underlying depression and the antidepressant effect of ATP.


Subject(s)
Habenula , Adenosine Triphosphate/metabolism , Animals , Depression/etiology , Dorsal Raphe Nucleus/metabolism , Habenula/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Prefrontal Cortex/metabolism
19.
Article in English | MEDLINE | ID: mdl-35360660

ABSTRACT

Background: Houttuynia cordata Thunb. is a traditional Chinese herb widely used mainly because of the pharmacological effects related to heat clearance and detoxification. Emerging clinical evidence indicates that the efficacy of Houttuynia cordata Thunb. on RILI is upstanding. Nevertheless, its underlying therapeutic mechanism remains unclear and warrants further elucidation. Methods: The major active components and corresponding targets of Houttuynia cordata Thunb. were retrieved from the traditional Chinese medicine system pharmacology database (TCMSP) and literature review. The related targets of RILI were retrieved from the GeneCards database. Common targets among the active compounds and diseases were identified through Venn diagram analysis. Cytoscape was employed to construct and visualize the network relationship among the drug, active compounds, targets, and disease. The protein interaction network (PPI) was constructed by STRING. The reliability (the binding affinity) of the core targets and active compounds was verified by molecular docking. Results: A search of the TCMSP database and related literature revealed 12 active compounds of Houttuynia cordata Thunb. against RILI. The core active compounds included quercetin, kaempferol, hyperoside, and rutin. Hub nodes including TP53, VEGFA, JUN, TNF, and IL-6 were identified in the PPI network. The GO categories were classified into three functional categories: 112 biological processes, 9 molecular functions, and 32 cellular components of the active compounds of Houttuynia cordata Thunb. The KEGG pathway enrichment analysis demonstrated the enrichment of target genes in several key cancer-related signaling pathways, including the cancer pathways, TNF signaling pathway, PI3K-Akt signaling pathway, and HIF-1 signaling pathway. Molecular docking analysis validated the effective binding capacity of the main active compounds with the core targets. Conclusion: The main active components of Houttuynia cordata Thunb. have a potential pharmacological effect against RILI via the cancer pathways, TNF signaling pathway, and PI3K-Akt signaling pathway.

20.
J Theor Biol ; 540: 111089, 2022 05 07.
Article in English | MEDLINE | ID: mdl-35283183

ABSTRACT

We construct a compact model to mimic the membrane voltage response to the concentration of acetylcholine ([ACh]) which is mediated by the stochastic gating of acetylcholine (ACh) receptors. The patterns of the voltage depolarization against [ACh] as well as the accompanying voltage noises are presented. The mechanism of the voltage fluctuation that caused by the stochastic gating of receptors is explained. We consider that our results explain the frequently observed "end-plate (potential) noise" in physiology and electromyographic literature. These results, together with the requirements of evolution pressure on the motor units, explain reasonably the anatomical structure of the neuromuscular junction.


Subject(s)
Motor Endplate , Neuromuscular Junction , Acetylcholine/physiology , Excitatory Postsynaptic Potentials , Membrane Potentials , Motor Endplate/physiology , Neuromuscular Junction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...