Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
BMC Med Genomics ; 15(1): 13, 2022 01 21.
Article in English | MEDLINE | ID: mdl-35062922

ABSTRACT

BACKGROUND: Cerebral palsy (CP) is a spectrum of non-progressive motor disorders caused by brain injury during fetal or postnatal periods. Current diagnosis of CP mainly relies on neuroimaging and motor assessment. Here, we aimed to explore novel biomarkers for early diagnosis of CP. METHODS: Blood plasma from five children with CP and their healthy twin brothers/sisters was analyzed by gene microarray to screen out differentially expressed RNAs. Selected differentially expressed circular RNAs (circRNAs) were further validated using quantitative real-time PCR. Receiver operating characteristic (ROC) curve analysis was used to assess the specificity and sensitivity of hsa_circ_0086354 in discriminating children with CP and healthy controls. RESULTS: 43 up-regulated circRNAs and 2 down-regulated circRNAs were obtained by difference analysis (fold change > 2, p < 0.05), among which five circRNAs related to neuron differentiation and neurogenesis were chosen for further validation. Additional 30 pairs of children with CP and healthy controls were recruited and five selected circRNAs were further detected, showing that hsa_circ_0086354 was significantly down-regulated in CP plasma compared with control, which was highly in accord with microarray analysis. ROC curve analysis showed that the area under curve (AUC) to discriminate children with CP and healthy controls using hsa_circ_0086354 was 0.967, the sensitivity was 0.833 and the specificity was 0.966. Moreover, hsa_circ_0086354 was predicted as a competitive endogenous RNA for miR-181a, and hsa_circ_0086354 expression was negatively correlated to miR-181a expression in children with CP. CONCLUSION: Hsa_circ_0086354 was significantly down-regulated in blood plasma of children with CP, which may be a novel competent biomarker for early diagnosis of CP.


Subject(s)
Cerebral Palsy , RNA, Circular , Biomarkers/metabolism , Cerebral Palsy/diagnosis , Cerebral Palsy/genetics , Child , Early Diagnosis , Humans , Male , ROC Curve
2.
Zhongguo Dang Dai Er Ke Za Zhi ; 21(2): 131-138, 2019 Feb.
Article in Chinese | MEDLINE | ID: mdl-30782274

ABSTRACT

OBJECTIVE: To study the expression of high-mobility group box 1 (HMGB1) in neonates with sepsis and its role in the pathogenesis of neonatal sepsis. METHODS: A total of 62 neonates with sepsis were enrolled as the sepsis group, 66 neonates with local infection were enrolled as the local infection group, and 70 healthy neonates were enrolled as the healthy control group. Serum levels of interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-17 (IL-17), interleukin-23 (IL-23), C-reactive protein (CRP) and procalcitonin (PCT) were measured. The mRNA expression of HMGB1, Toll-like receptor 4 (TLR4) and nuclear factor-kappa B (NF-κB) and the protein expression of TLR4 and NF-κB in peripheral blood mononuclear cells (PBMCs) were also measured. PBMCs from healthy neonates were divided into 4 groups: control, HMGB1 treatment, HMGB1+TAK-242 (a TLR4 inhibitor) treatment and HMGB1+PDTC (an NF-κB inhibitor) treatment, and the mRNA expression of TLR4, NF-κB and IL-8 and the protein expression of TLR4 and NF-κB were measured. PBMCs from healthy neonates were divided into another 3 groups: control, LPS treatment and LPS+glycyrrhizin (an HMGB1 inhibitor) treatment, and the mRNA expression of HMGB1, TLR4, NF-κB and IL-8 and the protein expression of TLR4 and NF-κB were measured. RESULTS: Compared with the local infection and healthy control groups, the sepsis group had significantly higher serum levels of IL-6, IL-8, IL-17, IL-23, CRP and PCT (P<0.05), as well as significantly higher mRNA expression of HMGB1, TLR4 and NF-κB and protein expression of TLR4 and NF-κB in PBMCs (P<0.05). HMGB1 significantly induced the mRNA and protein expression of TLR4 and NF-κB in PBMCs (P<0.05). TAK-242 inhibited the mRNA and protein expression of TLR4 and NF-κB and mRNA expression of IL-8 (P<0.05). PDTC inhibited the mRNA and protein expression of NF-κB and the mRNA expression of IL-8 (P<0.05). LPS significantly induced the mRNA expression of HMGB1 and the mRNA and protein expression of TLR4 and NF-κB and then stimulated the mRNA expression of IL-8 (P<0.05). Glycyrrhizin inhibited the mRNA expression of HMGB1 and the mRNA and protein expression of TLR4 and NF-κB and then reduced the mRNA expression of IL-8 (P<0.05). CONCLUSIONS: HMGB1 plays an important role in the pathogenesis of neonatal sepsis by activating the TLR4/NF-κB signaling pathway and inducing the secretion of inflammatory factors including IL-8. The HMGB1 blocker glycyrrhizin can inhibit activation of the TLR4/NF-κB signaling pathway and the secretion of inflammatory factors.


Subject(s)
HMGB1 Protein/genetics , Sepsis , Humans , Infant, Newborn , Leukocytes, Mononuclear , NF-kappa B , Sepsis/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...