Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Eur J Pharm Biopharm ; : 114396, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971201

ABSTRACT

Proteins have recently caught attention as potential excipients for amorphous solid dispersions (ASDs) to improve oral bioavailability of poorly water-soluble drugs. Notably, the studies have highlighted whey protein isolates, particularly ß-lactoglobulin (BLG), as promising candidates in amorphous stabilization, dissolution and solubility enhancement, achieving drug loadings of 50 wt% and higher. Consequently, investigations into the mechanisms underlying the solid-state stabilization of amorphous drugs and the enhancement of drug solubility in solution have been conducted. This graphical review provides a comprehensive overview of recent findings concerning BLG-based ASDs. Firstly, the dissolution performance of BLG-based ASDs is compared to more traditional polymer-based ASDs. Secondly, the drug loading onto BLG and the resulting amorphous stabilization mechanisms is summarized. Thirdly, interactions between BLG and drug molecules in solution are described as the mechanisms governing the improvement of drug solubility. Lastly, we outline the impact of the spray drying process on the secondary structure of BLG, and the resulting differences in amorphous stabilization and drug dissolution performance between α-helix-rich and ß-sheet-rich BLG-based ASDs.

2.
Eur J Pharm Biopharm ; 198: 114274, 2024 May.
Article in English | MEDLINE | ID: mdl-38561067

ABSTRACT

Amorphous solid dispersions (ASDs) using proteins as carriers have emerged as a promising strategy for stabilizing amorphous drug molecules. Proteins possess diverse three-dimensional structures that significantly influence their own properties and may also impact the properties of ASDs. We prepared ß-lactoglobulin (BLG) with different contents of ß-sheet and α-helical secondary structures by initially dissolving BLG in different mixed solvents, containing different ratios of water, methanol/ethanol, and acetic acid, followed by spray drying of the solutions. Our findings revealed that an increase in α-helical content resulted in a decrease in the glass transition temperature (Tg) of the protein. Subsequently, we utilized the corresponding mixed solvents to dissolve both BLG and the model drug celecoxib (CEL), allowing the preparation of ASDs containing either ß-sheet-rich or α-helix/random coil-rich BLG. Using spray drying, we successfully developed BLG-based ASDs with drug loadings ranging from 10 wt% to 90 wt%. At drug loadings below 40 wt%, samples prepared using both methods exhibited single-phase ASDs. However, heterogeneous systems formed when the drug loading exceeded 40 wt%. At higher drug loadings, physical stability assessments demonstrated that the α-helix/random coil-rich BLG structure exerted a more pronounced stabilizing effect on the drug-rich phase compared to the ß-sheet-rich BLG. Overall, our results highlight the importance of considering protein secondary structure in the design of ASDs.


Subject(s)
Water , Transition Temperature , Celecoxib/chemistry , Temperature , Solvents , Solubility , Drug Compounding/methods
3.
Int J Pharm ; 653: 123887, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38346599

ABSTRACT

Proteins acting as carriers in amorphous solid dispersions (ASDs) demonstrate a notable sensitivity to the spray drying process, potentially leading to changes in their conformation. The main aim of this study was to investigate the dissolution performance of ASDs based on proteins with different content of secondary structures, specifically ß-sheet and α-helix structures. We prepared ß-sheet-rich and α-helix-rich ß-lactoglobulin (BLG), along with corresponding ASDs containing 10 wt% and 30 wt% drug loadings, through spray drying using celecoxib as the model drug. Circular dichroism and Fourier Transform Infrared Spectroscopy results revealed that even though changes in secondary structure were obtained in the spray-dried powders, the BLGs exhibited reversibility upon re-dissolving in phosphate buffer with varying pH levels. Both ß-sheet-rich BLG and α-helix-rich BLG exhibited enhanced dissolution rates and higher solubility in the media with pH values far from the isoelectric point (pI) of BLG (pH 2, 7, 8, and 9) compared to the pH closer to the pI (pH 3, 4, 5, and 6). Notably, the release rate and solubility of the drug and BLG from both types of BLG-based ASDs at 10 wt% drug loading were largely dependent on the solubility of pure SD-BLGs. α-helix-rich BLG-ASDs consistently exhibited equivalent or superior performance to ß-sheet-rich BLG-ASDs in terms of drug release rate and solubility, regardless of drug loading. Moreover, both types of BLG-based ASDs at 10 wt% drug loading exhibited faster release rates and higher solubility, for both the drug and BLG, compared to the ASDs at 30 wt% drug loading in pHs 2, 7, and 9 media.


Subject(s)
Crystallization , Solubility , Drug Liberation , Spectroscopy, Fourier Transform Infrared , Celecoxib , Drug Compounding/methods
4.
Eur J Pharm Sci ; 192: 106639, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37967658

ABSTRACT

Our previous work shows that ß-lactoglobulin-stabilized amorphous solid dispersion (ASD) loaded with 70 % indomethacin remains stable for more than 12 months. The stability is probably due to hydrogen bond networks spread throughout the ASD, facilitated by the indomethacin which has both hydrogen donors and acceptors. To investigate the stabilization mechanisms further, here we tested five other drug molecules, including two without any hydrogen bond donors. A combination of experimental techniques (differential scanning calorimetry, X-ray power diffraction) and molecular dynamics simulations was used to find the maximum drug loadings for ASDs with furosemide, griseofulvin, ibuprofen, ketoconazole and rifaximin. This approach revealed the underlying stabilization factors and the capacity of computer simulations to predict ASD stability. We searched the ASD models for crystalline patterns, and analyzed diffusivity of the drug molecules and hydrogen bond formation. ASDs loaded with rifaximin and ketoconazole remained stable for at least 12 months, even at 90 % drug loading, whereas stable drug loadings for furosemide, griseofulvin and ibuprofen were at a maximum of 70, 50 and 40 %, respectively. Steric confinement and hydrogen bonding to the proteins were the most important stabilization mechanisms at low drug loadings (≤ 40 %). Inter-drug hydrogen bond networks (including those with induced donors), ionic interactions, and a high Tg of the drug molecule were additional factors stabilizing the ASDs at drug loading greater than 40 %.


Subject(s)
Ibuprofen , Ketoconazole , Ibuprofen/chemistry , Furosemide , Lactoglobulins , Griseofulvin , Rifaximin , Indomethacin/chemistry , Solubility , Drug Compounding/methods
5.
Mol Pharm ; 20(10): 5206-5213, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37669430

ABSTRACT

Protein-based amorphous solid dispersions (ASDs) have emerged as a promising approach for enhancing solubility in comparison to crystalline drugs. The dissolution behavior of protein-based amorphous solid dispersions (ASDs) was investigated in various pH media. ASDs of four poorly soluble model drugs with acidic (furosemide and indomethacin), basic (carvedilol), and neutral (celecoxib) properties were prepared by spray drying at 30 wt % drug loading with the protein ß-lactoglobulin (BLG). The effect of spray-dried BLG (SD-BLG) solubility and protein binding ability with dissolved drugs in solution were investigated to retrieve the mechanisms governing the improvement of drug solubility from the BLG-based ASDs. Powder dissolution results showed that all ASDs obtained a higher maximum concentration (Cmax) compared to the respective pure crystalline drugs. It was found that the solubility increase of the drugs from the ASDs was to a large extent dependent on the solubility of the pure SD-BLG at the investigated pH values (low solubility at pH near the isoelectric point (pI) of BLG). Furthermore, drug-protein interactions in a solution were observed, in particular at pH values where the drugs were neutral. These drug-protein interactions also resulted, to some extent, in the stabilization of the drug in supersaturation.


Subject(s)
Indomethacin , Lactoglobulins , Solubility , Indomethacin/chemistry , Celecoxib/pharmacology , Carvedilol , Drug Liberation , Drug Compounding/methods
6.
Mol Pharm ; 19(11): 3922-3933, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36135343

ABSTRACT

Proteins, and in particular whey proteins, have recently been introduced as a promising excipient class for stabilizing amorphous solid dispersions. However, despite the efficacy of the approach, the molecular mechanisms behind the stabilization of the drug in the amorphous form are not yet understood. To investigate these, we used experimental and computational techniques to study the impact of drug loading on the stability of protein-stabilized amorphous formulations. ß-Lactoglobulin, a major component of whey, was chosen as a model protein and indomethacin as a model drug. Samples, prepared by either ball milling or spray drying, formed single-phase amorphous solid dispersions with one glass transition temperature at drug loadings lower than 40-50%; however, a second glass transition temperature appeared at drug loadings higher than 40-50%. Using molecular dynamics simulations, we found that a drug-rich phase occurred at a loading of 40-50% and higher, in agreement with the experimental data. The simulations revealed that the mechanisms of the indomethacin stabilization by ß-lactoglobulin were a combination of (a) reduced mobility of the drug molecules in the first drug shell and (b) hydrogen-bond networks. These networks, formed mostly by glutamic and aspartic acids, are situated at the ß-lactoglobulin surface, and dependent on the drug loading (>40%), propagated into the second and subsequent drug layers. The simulations indicate that the reduced mobility dominates at low (<40%) drug loadings, whereas hydrogen-bond networks dominate at loadings up to 75%. The computer simulation results agreed with the experimental physical stability data, which showed a significant stabilization effect up to a drug fraction of 70% under dry storage. However, under humid conditions, stabilization was only sufficient for drug loadings up to 50%, confirming the detrimental effect of humidity on the stability of protein-stabilized amorphous formulations.


Subject(s)
Indomethacin , Lactoglobulins , Indomethacin/chemistry , Computer Simulation , Excipients/chemistry , Drug Compounding/methods , Hydrogen , Drug Stability , Solubility
7.
Pharmaceutics ; 15(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36678757

ABSTRACT

Amorphous solid dispersions (ASDs) based on proteins as co-formers have previously shown promising potential to improve the solubility and bioavailability of poorly water-soluble drugs. In particular, whey proteins have shown to be promising co-formers and amorphous stabilizers in ASD formulations, including at high drug loading. In this study, the feasibility of the whey protein ß-lactoglobulin (BLG) as a co-former in ASDs was compared to the more traditional ASD co-formers based on synthetic polymers (hydroxypropyl methylcellulose acetate succinate and Eudragit® L) as well as to a nanocrystalline formulation. The poorly water-soluble drug rifaximin (RFX) was chosen as the model drug. All drug/co-former formulations were prepared as fully amorphous ASDs by spray drying at 50% (w/w) drug loading. The BLG-based ASD had the highest glass transition temperature and showed a faster dissolution rate and higher drug solubility in three release media with different pH values (1.2, 4.5, and 6.5) compared to the polymer-based ASDs and the nanocrystalline RFX. In conclusion, BLG is a promising co-former and amorphous stabilizer of RFX in ASD formulations, superior to the selected polymer-based ASD systems or the nanocrystalline formulation.

8.
Pharm Res ; 35(12): 230, 2018 Oct 11.
Article in English | MEDLINE | ID: mdl-30327887

ABSTRACT

PURPOSE: Despite being widely used for the treatment of several solid tumors, Gemcitabine (GEM) exhibits several suboptimal pharmacokinetic properties. Therefore, the design of nanoparticle delivery systems is a promising strategy to enhance GEM pharmacokinetic properties. METHODS: In this work, the polymeric material methoxy poly(ethylene glycol)-block-poly(L-glutamic acid)-graft-gemcitabine (mPEG-b-PLG-g-GEM) was synthesized through the covalent conjugation of GEM with the carboxylic group of methoxy poly(ethylene glycol)-block-poly (L-glutamic acid) (mPEG-b-PLG) (mPEG113, Mn = 5000). mPEG-PLG-GEM/CaP nanoparticles were prepared through the simple mixing of calcium and phosphate/mPEG-PLG-GEM solutions. mPEG-PLG-GEM was embedded in the calcium phophate (CaP) backbone via electrostatic interactions. RESULTS: After incubation in plasma at 37°C for 24 h, gemcitabine was degraded by 24.6% for the mPEG-PLG-GEM, 14.7% for the mPEG-PLG-GEM/CaP nanoparticles, and 90% for the free gemcitabine solution. It was observed that mPEG-PLG-GEM and mPEG-PLG-GEM/CaP improved the area-under-curve (AUC) values by 5.26-fold and 6.33-fold compared to free drug, respectively. CONCLUSION: The amide bond linked gemcitabine polymers was able to protect GEM from cytidine deaminase degradation in vivo, and the skeleton formed by the calcium phosphate enhanced the stability and prolonged the half-life of GEM. Importantly, mPEG-PLG-GEM/CaP nanoparticles elevated the GEM plasma concentration in an animal model.


Subject(s)
Antimetabolites, Antineoplastic/blood , Calcium Phosphates/chemistry , Deoxycytidine/analogs & derivatives , Nanoconjugates/chemistry , Polyethylene Glycols/chemistry , Polyglutamic Acid/analogs & derivatives , Animals , Antimetabolites, Antineoplastic/administration & dosage , Antimetabolites, Antineoplastic/chemistry , Deoxycytidine/administration & dosage , Deoxycytidine/blood , Deoxycytidine/chemistry , Drug Stability , Humans , Nanoconjugates/ultrastructure , Polyglutamic Acid/chemistry , Rats, Sprague-Dawley , Gemcitabine
9.
J Colloid Interface Sci ; 529: 34-43, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-29883928

ABSTRACT

To develop an injectable formulation and improve the stability of disulfiram (DSF), DSF was encapsulated into mixed nanoparticles (DSF-NPs) through a high-pressure homogenization method. The Flory-Huggins interaction parameters (χFH) were calculated to predict the miscibility between DSF and the hydrophobic core, resulting in PCL5000 selected as the hydrophobic block to encapsulate the DSF, as PCL5000 had a lower χFH 3.39 and the drug loading of the nanoparticles prepared by mPEG5000-PCL5000 was relatively higher. mPEG5000-PCL5000 and PCL5000 were blended to reduce the leakage of DSF during preparation, as well as increase the stability of the nanoparticles. The cargo-loading capacity of the nanoparticles was improved from 3.35% to 5.50% by reducing the crystallinity of the PCL nanoparticle core, and the crystallinity decreased from 51.13% to 25.15% after adding medium chain triglyceride (MCT). The DSF-NPs prepared by the above method had a small particle size of 98.1 ±â€¯10.54 nm, with a polydispersity index (PDI) of 0.036, as well as drug loading of 5.50%. Furthermore, DSF-NPs containing MCT showed higher stability than DSF-NPs without MCT and DSF-sol (DSF dissolved in Cremophor EL and ethanol) in water and 90% plasma-containing PBS. The pharmacokinetics proved that DSF-NPs containing MCT enhanced the DSF concentration in the blood. Finally, DSF-NPs effectively inhibited H22 xenograft tumor growth in vivo.


Subject(s)
Acetaldehyde Dehydrogenase Inhibitors/administration & dosage , Alcohol Deterrents/administration & dosage , Antineoplastic Agents/administration & dosage , Disulfiram/administration & dosage , Drug Carriers/chemistry , Nanoparticles/chemistry , Polyesters/chemistry , Polyethylene Glycols/chemistry , Acetaldehyde Dehydrogenase Inhibitors/blood , Acetaldehyde Dehydrogenase Inhibitors/chemistry , Alcohol Deterrents/blood , Alcohol Deterrents/chemistry , Animals , Antineoplastic Agents/blood , Antineoplastic Agents/chemistry , Crystallization , Disulfiram/blood , Disulfiram/chemistry , Female , Humans , Injections, Intravenous , Male , Mice , Nanoparticles/ultrastructure , Particle Size , Rats, Sprague-Dawley
10.
Mol Pharm ; 15(4): 1556-1564, 2018 04 02.
Article in English | MEDLINE | ID: mdl-29505711

ABSTRACT

The clinical application of disulfiram (DSF) in cancer treatments is hindered by its rapid degradation in the blood circulation. In this study, methoxy poly(ethylene glycol)- b-poly(lactide- co-glycolide)/poly(ε-caprolactone) (mPEG5k- b-PLGA2k/PCL3.4k) micelles were developed for encapsulation of DSF by using the emulsification-solvent diffusion method. Medium chain triglyceride (MCT) was incorporated into the mixed polymeric micelles to improve drug loading by reducing the core crystallinity. Differential scanning calorimetry (DSC) results implied that DSF is likely present in an amorphous form within the micelles, and is well dispersed. DSF is encapsulated within the core and the reservoir is stabilized by the hydrophilic shell to prevent rapid diffusion of DSF from the core. The DSF mixed micelles (DSF-MMs) showed good drug loading (5.90%) and a well-controlled particle size (86.4 ± 13.2 nm). The mixed micelles efficiently protected DSF from degradation in plasma, with 58% remaining after 48 h, while almost 90% of DSF was degraded after the same period for the DSF solution (DSF-sol), which was used as a control. The pharmacokinetics study showed that the maximum plasma concentration and bioavailability of DSF were improved by using the DSF-MMs (2 and 2.5 times that of the DSF-sol). The TIRs (tumor inhibition rates) of 5-FU, DSF-sol, and DSF-MMs were 63.46, 19.57, and 69.98%, respectively, implying that DSF-MMs slowed the growth of a H22 xenograft tumor model effectively.


Subject(s)
Antineoplastic Agents/blood , Antineoplastic Agents/chemistry , Caproates/chemistry , Disulfiram/blood , Disulfiram/chemistry , Drug Carriers/chemistry , Lactones/chemistry , Polyesters/chemistry , Polyethylene Glycols/chemistry , Animals , Biological Availability , Hydrophobic and Hydrophilic Interactions , Mice , Micelles , Particle Size , Polymers/chemistry , Rats , Triglycerides/chemistry
11.
Eur J Pharm Sci ; 109: 638-649, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28918930

ABSTRACT

The purpose of the study was to develop a parenteral docetaxel lipid microsphere to inhibit its 7-epidocetaxel conversion in vitro and in vivo. 7-epidocetaxel conversion as the main indicator was investigated to optimize the formulation and process. 10% medium-chain triglyceride/long-chain triglyceride (3:1) as the oil phase, egg lecithin E80 as the emulsifier and 0.02% NaHSO3 as the acidity regulator were selected to prepare docetaxel lipid microsphere. This study found that pH and temperature were dominant factors on the epimerization of docetaxel in lipid microsphere, and that optimum conditions were a pH of 5.3 and thermal sterilization conditions of 121°Cautoclaving for 8min. According to the degradation kinetics, docetaxel lipid microsphere had a wider pH range where 7-epidocetaxel(%) stayed at low levels than Docetaxel for Injection, and might improve the docetaxel stability by loading drug in lecithin layer instead of altering the degradation mechanism. Docetaxel lipid microsphere decreased epimerization in plasma in vitro obviously. Pharmacokinetics of docetaxel and 7-epidocetaxel were investigated to quantify the 7-epidocetaxel conversion in vivo. The resulrs indicated that there was less conversion of docetaxel in lipid microspheres than in Docetaxel for Injection. The convert ratios were 0.61% and 3.04% respectively. In conclusion, lipid microsphere is a promising delivery system for intravenous administration of docetaxel with decreased 7-epidocetaxel conversion.


Subject(s)
Antineoplastic Agents/administration & dosage , Microspheres , Taxoids/administration & dosage , Taxoids/metabolism , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Docetaxel , Drug Administration Routes , Drug Liberation , Drug Stability , Female , Lipids/administration & dosage , Lipids/chemistry , Lipids/pharmacokinetics , Male , Plasma/chemistry , Rats, Sprague-Dawley , Taxoids/chemistry , Taxoids/pharmacokinetics , Temperature
12.
Int J Pharm ; 528(1-2): 62-75, 2017 Aug 07.
Article in English | MEDLINE | ID: mdl-28579543

ABSTRACT

A series of mixed hydrogels of PLGA-PEG-PLGA and PCLA-PEG-PCLA were synthesized, and investigated in terms of their critical micelle concentration, stability and thermosensitive properties. Also, some mixed hydrogel was selected to prepare Depot-gel-in-Ms-in-Matrix-gel system for the treatment of type 2 diabetes mellitus. Briefly, Exenatide (EXT) loaded hydrogels was encapsulated in PLGA microspheres (Ms) and further encapsulated into blank hydrogel. The mechanism of Exenatide release involved drug diffusion, hydrogel diffusion, PLGA erosion and mixed hydrogel erosion. The results showed that EXT release in vitro was at a sustained rate for 46days, because it is controlled by the inner-deport-gel, the Ms matrix and the outer-Matrix-gel successively. No burst release or platform was observed due to the interception function and control function of the outer-Matrix-gel. The biological activity of EXT was protected, because the hydrophilic EXT molecules tend to distribute in the hydrophilic domain of the mixed hydrogel. In vivo, a single injection of Depot-gel-in-Ms-in-Matrix-gel allowed mice to maintain a stable blood glucose concentration and well-controlled body weight for 20days. In addition, results of oral glucose tolerance test and Hematoxylin-Eosin staining demonstrated that triple-barrier Depot-gel-in-Ms-in-Matrix-gel was a promising hydrophilic protein/polypeptide-loaded long-acting system with high drug bioactivity.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Drug Carriers/chemistry , Hydrogels/chemistry , Microspheres , Peptides/administration & dosage , Venoms/administration & dosage , Animals , Exenatide , Lactic Acid/chemistry , Mice , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer
13.
J Mater Chem B ; 5(8): 1551-1565, 2017 Feb 28.
Article in English | MEDLINE | ID: mdl-32263928

ABSTRACT

PLGA-PEG-PLGA (PPP) triblock copolymer is the most widely studied thermosensitive hydrogel owing to its non-toxic, biocompatible, biodegradable, and thermosensitive properties. PPP thermosensitive hydrogels are being investigated as in situ gels because, at a low temperature, PPP solutions with drugs can be injected at the target site, and converted into a gel without surgical procedures. To meet the requirements of different therapeutic applications, PPP hydrogels with different properties need to be synthesized. The adjustable properties include the sol-gel transition temperature, gel window width, retention time and drug release time. Furthermore, thermo- and pH-, thermo- and electro-, and thermo- and photo-dual sensitive hydrogels are needed for some special therapies. Thus, this review examines the methods of modification of PPP thermosensitive hydrogels used to obtain desired drug delivery systems with appropriate physicochemical and pharmaceutical properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...