Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-509040

ABSTRACT

The primary two-dose SARS-CoV-2 mRNA vaccine series are strongly immunogenic in humans, but the emergence of highly infectious variants necessitated additional doses of these vaccines and the development of new variant-derived ones1-4. SARS-CoV-2 booster immunizations in humans primarily recruit pre-existing memory B cells (MBCs)5-9. It remains unclear, however, whether the additional doses induce germinal centre (GC) reactions where reengaged B cells can further mature and whether variant-derived vaccines can elicit responses to novel epitopes specific to such variants. Here, we show that boosting with the original SARS- CoV-2 spike vaccine (mRNA-1273) or a B.1.351/B.1.617.2 (Beta/Delta) bivalent vaccine (mRNA-1273.213) induces robust spike-specific GC B cell responses in humans. The GC response persisted for at least eight weeks, leading to significantly more mutated antigen-specific MBC and bone marrow plasma cell compartments. Interrogation of MBC-derived spike-binding monoclonal antibodies (mAbs) isolated from individuals boosted with either mRNA-1273, mRNA-1273.213, or a monovalent Omicron BA.1-based vaccine (mRNA-1273.529) revealed a striking imprinting effect by the primary vaccination series, with all mAbs (n=769) recognizing the original SARS-CoV-2 spike protein. Nonetheless, using a more targeted approach, we isolated mAbs that recognized the spike protein of the SARS-CoV-2 Omicron (BA.1) but not the original SARS-CoV-2 spike from the mRNA-1273.529 boosted individuals. The latter mAbs were less mutated and recognized novel epitopes within the spike protein, suggesting a naive B cell origin. Thus, SARS-CoV-2 boosting in humans induce robust GC B cell responses, and immunization with an antigenically distant spike can overcome the antigenic imprinting by the primary vaccination series.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-495472

ABSTRACT

SARS-CoV-2 cell entry starts with membrane attachment and ends with spike-protein (S) catalyzed membrane fusion depending on two cleavage steps, one usually by furin in producing cells and the second by TMPRSS2 on target cells. Endosomal cathepsins can carry out both. Using real-time 3D single virion tracking, we show fusion and genome penetration requires virion exposure to an acidic milieu of pH 6.2-6.8, even when furin and TMPRSS2 cleavages have occurred. We detect the sequential steps of S1-fragment dissociation, fusion, and content release from the cell surface in TMPRRS2 overexpressing cells only when exposed to acidic pH. We define a key role of an acidic environment for successful infection, found in endosomal compartments and at the surface of TMPRSS2 expressing cells in the acidic milieu of the nasal cavity. Significance StatementInfection by SARS-CoV-2 depends upon the S large spike protein decorating the virions and is responsible for receptor engagement and subsequent fusion of viral and cellular membranes allowing release of virion contents into the cell. Using new single particle imaging tools, to visualize and track the successive steps from virion attachment to fusion, combined with chemical and genetic perturbations of the cells, we provide the first direct evidence for the cellular uptake routes of productive infection in multiple cell types and their dependence on proteolysis of S by cell surface or endosomal proteases. We show that fusion and content release always require the acidic environment from endosomes, preceded by liberation of the S1 fragment which depends on ACE2 receptor engagement. One sentence summaryDetailed molecular snapshots of the productive infectious entry pathway of SARS-CoV-2 into cells

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-491108

ABSTRACT

SARS-CoV-2 Omicron sublineages carry distinct spike mutations and represent an antigenic shift resulting in escape from antibodies induced by previous infection or vaccination. We show that hybrid immunity or vaccine boosters result in potent plasma neutralizing activity against Omicron BA.1 and BA.2 and that breakthrough infections, but not vaccination-only, induce neutralizing activity in the nasal mucosa. Consistent with immunological imprinting, most antibodies derived from memory B cells or plasma cells of Omicron breakthrough cases cross-react with the Wuhan-Hu-1, BA.1 and BA.2 receptor-binding domains whereas Omicron primary infections elicit B cells of narrow specificity. While most clinical antibodies have reduced neutralization of Omicron, we identified an ultrapotent pan-variant antibody, that is unaffected by any Omicron lineage spike mutations and is a strong candidate for clinical development.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-464254

ABSTRACT

Understanding broadly neutralizing sarbecovirus antibody responses is key to developing countermeasures effective against SARS-CoV-2 variants and future spillovers of other sarbecoviruses. Here we describe the isolation and characterization of a human monoclonal antibody, designated S2K146, broadly neutralizing viruses belonging to all three sarbecovirus clades known to utilize ACE2 as entry receptor and protecting therapeutically against SARS-CoV-2 beta challenge in hamsters. Structural and functional studies show that most of the S2K146 epitope residues are shared with the ACE2 binding site and that the antibody inhibits receptor attachment competitively. Viral passaging experiments underscore an unusually high barrier for emergence of escape mutants making it an ideal candidate for clinical development. These findings unveil a key site of vulnerability for the development of a next generation of vaccines eliciting broad sarbecovirus immunity.

5.
Preprint in English | bioRxiv | ID: ppbiorxiv-451375

ABSTRACT

Escape variants of SARS-CoV-2 are threatening to prolong the COVID-19 pandemic. To address this challenge, we developed multivalent protein-based minibinders as potential prophylactic and therapeutic agents. Homotrimers of single minibinders and fusions of three distinct minibinders were designed to geometrically match the SARS-CoV-2 spike (S) trimer architecture and were optimized by cell-free expression and found to exhibit virtually no measurable dissociation upon binding. Cryo-electron microscopy (cryoEM) showed that these trivalent minibinders engage all three receptor binding domains on a single S trimer. The top candidates neutralize SARS-CoV-2 variants of concern with IC50 values in the low pM range, resist viral escape, and provide protection in highly vulnerable human ACE2-expressing transgenic mice, both prophylactically and therapeutically. Our integrated workflow promises to accelerate the design of mutationally resilient therapeutics for pandemic preparedness. One-Sentence SummaryWe designed, developed, and characterized potent, trivalent miniprotein binders that provide prophylactic and therapeutic protection against emerging SARS-CoV-2 variants of concern.

6.
Preprint in English | bioRxiv | ID: ppbiorxiv-438709

ABSTRACT

An ideal anti-SARS-CoV-2 antibody would resist viral escape1-3, have activity against diverse SARS-related coronaviruses4-7, and be highly protective through viral neutralization8-11 and effector functions12,13. Understanding how these properties relate to each other and vary across epitopes would aid development of antibody therapeutics and guide vaccine design. Here, we comprehensively characterize escape, breadth, and potency across a panel of SARS-CoV-2 antibodies targeting the receptor-binding domain (RBD), including S3094, the parental antibody of the late-stage clinical antibody VIR-7831. We observe a tradeoff between SARS-CoV-2 in vitro neutralization potency and breadth of binding across SARS-related coronaviruses. Nevertheless, we identify several neutralizing antibodies with exceptional breadth and resistance to escape, including a new antibody (S2H97) that binds with high affinity to all SARS-related coronavirus clades via a unique RBD epitope centered on residue E516. S2H97 and other escape-resistant antibodies have high binding affinity and target functionally constrained RBD residues. We find that antibodies targeting the ACE2 receptor binding motif (RBM) typically have poor breadth and are readily escaped by mutations despite high neutralization potency, but we identify one potent RBM antibody (S2E12) with breadth across sarbecoviruses closely related to SARS-CoV-2 and with a high barrier to viral escape. These data highlight functional diversity among antibodies targeting the RBD and identify epitopes and features to prioritize for antibody and vaccine development against the current and potential future pandemics.

7.
Preprint in English | bioRxiv | ID: ppbiorxiv-438818

ABSTRACT

The recent emergence of SARS-CoV-2 variants of concern (VOC) and the recurrent spillovers of coronaviruses in the human population highlight the need for broadly neutralizing antibodies that are not affected by the ongoing antigenic drift and that can prevent or treat future zoonotic infections. Here, we describe a human monoclonal antibody (mAb), designated S2x259, recognizing a highly conserved cryptic receptor-binding domain (RBD) epitope and cross-reacting with spikes from all sarbecovirus clades. S2x259 broadly neutralizes spike-mediated entry of SARS-CoV-2 including the B.1.1.7, B.1.351, P.1 and B.1.427/B.1.429 VOC, as well as a wide spectrum of human and zoonotic sarbecoviruses through inhibition of ACE2 binding to the RBD. Furthermore, deep-mutational scanning and in vitro escape selection experiments demonstrate that S2x259 possesses a remarkably high barrier to the emergence of resistance mutants. We show that prophylactic administration of S2x259 protects Syrian hamsters against challenges with the prototypic SARS-CoV-2 and the B.1.351 variant, suggesting this mAb is a promising candidate for the prevention and treatment of emergent VOC and zoonotic infections. Our data unveil a key antigenic site targeted by broadly-neutralizing antibodies and will guide the design of pan-sarbecovirus vaccines.

8.
Preprint in English | medRxiv | ID: ppmedrxiv-21254656

ABSTRACT

BackgroundIndividuals with chronic inflammatory diseases (CID) are frequently treated with immunosuppressive medications that can increase their risk of severe COVID-19. While novel mRNA-based SARS-CoV-2 vaccination platforms provide robust protection in immunocompetent individuals, the immunogenicity in CID patients on immunosuppression is not well established. Therefore, determining the effectiveness of SARS-CoV-2 vaccines in the setting of immunosuppression is essential to risk-stratify CID patients with impaired protection and provide clinical guidance regarding medication management. MethodsWe conducted a prospective assessment of mRNA-based vaccine immunogenicity in 133 adults with CIDs and 53 immunocompetent controls. Blood from participants over 18 years of age was collected before initial immunization and 1-2 weeks after the second immunization. Serum anti-SARS-CoV-2 spike (S) IgG+ binding, neutralizing antibody titers, and circulating S-specific plasmablasts were quantified to assess the magnitude and quality of the humoral response following vaccination. ResultsCompared to immunocompetent controls, a three-fold reduction in anti-S IgG titers (P=0.009) and SARS-CoV-2 neutralization (p<0.0001) were observed in CID patients. B cell depletion and glucocorticoids exerted the strongest effect with a 36- and 10-fold reduction in humoral responses, respectively (p<0.0001). Janus kinase inhibitors and antimetabolites, including methotrexate, also blunted antibody titers in multivariate regression analysis (P<0.0001, P=0.0023, respectively). Other targeted therapies, such as TNF inhibitors, IL-12/23 inhibitors, and integrin inhibitors, had only modest impacts on antibody formation and neutralization. ConclusionsCID patients treated with immunosuppressive therapies exhibit impaired SARS-CoV-2 vaccine-induced immunity, with glucocorticoids and B cell depletion therapy more severely impeding optimal responses.

9.
Preprint in English | bioRxiv | ID: ppbiorxiv-441501

ABSTRACT

With the emergence of SARS-CoV-2 variants with increased transmissibility and potential resistance, antibodies and vaccines with broadly inhibitory activity are needed. Here we developed a panel of neutralizing anti-SARS-CoV-2 mAbs that bind the receptor binding domain of the spike protein at distinct epitopes and block virus attachment to cells and its receptor, human angiotensin converting enzyme-2 (hACE2). While several potently neutralizing mAbs protected K18-hACE2 transgenic mice against infection caused by historical SARS-CoV-2 strains, others induced escape variants in vivo and lost activity against emerging strains. We identified one mAb, SARS2-38, that potently neutralizes all SARS-CoV-2 variants of concern tested and protects mice against challenge by multiple SARS-CoV-2 strains. Structural analysis showed that SARS2-38 engages a conserved epitope proximal to the receptor binding motif. Thus, treatment with or induction of inhibitory antibodies that bind conserved spike epitopes may limit the loss of potency of therapies or vaccines against emerging SARS-CoV-2 variants.

10.
Preprint in English | bioRxiv | ID: ppbiorxiv-436864

ABSTRACT

The emergence of antigenically distinct severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with increased transmissibility is a public health threat. Some of these variants show substantial resistance to neutralization by SARS-CoV-2 infection- or vaccination-induced antibodies, which principally target the receptor binding domain (RBD) on the virus spike glycoprotein. Here, we describe 2C08, a SARS-CoV-2 mRNA vaccine-induced germinal center B cell-derived human monoclonal antibody that binds to the receptor binding motif within the RBD. 2C08 broadly neutralizes SARS-CoV-2 variants with remarkable potency and reduces lung inflammation, viral load, and morbidity in hamsters challenged with either an ancestral SARS-CoV-2 strain or a recent variant of concern. Clonal analysis identified 2C08-like public clonotypes among B cell clones responding to SARS-CoV-2 infection or vaccination in at least 20 out of 78 individuals. Thus, 2C08-like antibodies can be readily induced by SARS-CoV-2 vaccines and mitigate resistance by circulating variants of concern. One Sentence SummaryProtection against SARS-CoV-2 variants by a potently neutralizing vaccine-induced human monoclonal antibody.

11.
Preprint in English | bioRxiv | ID: ppbiorxiv-430072

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with amino-acid substitutions and deletions in spike protein (S) can reduce the effectiveness of monoclonal antibodies (mAbs) and may compromise immunity induced by vaccines. We report a polyclonal, fully human, anti-SARS-CoV-2 immunoglobulin produced in transchromosomic bovines (Tc-hIgG-SARS-CoV-2) hyperimmunized with two doses of plasmid DNA encoding the SARS-CoV-2 Wuhan strain S gene, followed by repeated immunization with S protein purified from insect cells. The resulting Tc-hIgG-SARS-CoV-2, termed SAB-185, efficiently neutralizes SARS-CoV-2, and vesicular stomatitis virus (VSV) SARS-CoV-2 chimeras in vitro. Neutralization potency was retained for S variants including S477N, E484K, and N501Y, substitutions present in recent variants of concern. In contrast to the ease of selection of escape variants with mAbs and convalescent human plasma, we were unable to isolate VSV-SARS-CoV-2 mutants resistant to Tc-hIgG-SARS-CoV-2 neutralization. This fully human immunoglobulin that potently inhibits SARS-CoV-2 infection may provide an effective therapeutic to combat COVID-19.

12.
Preprint in English | bioRxiv | ID: ppbiorxiv-426475

ABSTRACT

SARS-CoV-2 entry into host cells is orchestrated by the spike (S) glycoprotein that contains an immunodominant receptor-binding domain (RBD) targeted by the largest fraction of neutralizing antibodies (Abs) in COVID-19 patient plasma. Little is known about neutralizing Abs binding to epitopes outside the RBD and their contribution to protection. Here, we describe 41 human monoclonal Abs (mAbs) derived from memory B cells, which recognize the SARS-CoV-2 S N-terminal domain (NTD) and show that a subset of them neutralize SARS-CoV-2 ultrapotently. We define an antigenic map of the SARS-CoV-2 NTD and identify a supersite recognized by all known NTD-specific neutralizing mAbs. These mAbs inhibit cell-to-cell fusion, activate effector functions, and protect Syrian hamsters from SARS-CoV-2 challenge. SARS-CoV-2 variants, including the 501Y.V2 and B.1.1.7 lineages, harbor frequent mutations localized in the NTD supersite suggesting ongoing selective pressure and the importance of NTD-specific neutralizing mAbs to protective immunity.

13.
Preprint in English | bioRxiv | ID: ppbiorxiv-372037

ABSTRACT

Although neutralizing antibodies against the SARS-CoV-2 spike (S) protein are a goal of COVID-19 vaccines and have received emergency use authorization as therapeutics, viral escape mutants could compromise their efficacy. To define the immune-selected mutational landscape in S protein, we used a VSV-eGFP-SARS-CoV-2-S chimeric virus and 19 neutralizing monoclonal antibodies (mAbs) against the receptor-binding domain (RBD) to generate 50 different escape mutants. The variants were mapped onto the RBD structure and evaluated for cross-resistance to mAbs and convalescent human sera. Each mAb had a unique resistance profile, although many shared residues within an epitope. Some variants (e.g., S477N) were resistant to neutralization by multiple mAbs, whereas others (e.g., E484K) escaped neutralization by convalescent sera, suggesting some humans induce a narrow repertoire of neutralizing antibodies. Comparing the antibody-mediated mutational landscape in S with sequence variation in circulating SARS-CoV-2, we define substitutions that may attenuate neutralizing immune responses in some humans.

14.
Preprint in English | bioRxiv | ID: ppbiorxiv-312165

ABSTRACT

Pathogenic coronaviruses represent a major threat to global public health. Here, using a recombinant reporter virus-based compound screening approach, we identified several small-molecule inhibitors that potently block the replication of the newly emerged severe acute respiratory syndrome virus 2 (SARS-CoV-2). Among them, JIB-04 inhibited SARS-CoV-2 replication in Vero E6 cells with an EC50 of 695 nM, with a specificity index of greater than 1,000. JIB-04 showed in vitro antiviral activity in multiple cell types against several DNA and RNA viruses, including porcine coronavirus transmissible gastroenteritis virus. In an in vivo porcine model of coronavirus infection, administration of JIB-04 reduced virus infection and associated tissue pathology, which resulted in improved weight gain and survival. These results highlight the potential utility of JIB-04 as an antiviral agent against SARS-CoV-2 and other viral pathogens.

15.
Preprint in English | bioRxiv | ID: ppbiorxiv-292078

ABSTRACT

Antibodies targeting the SARS-CoV-2 spike receptor-binding domain (RBD) are being developed as therapeutics and make a major contribution to the neutralizing antibody response elicited by infection. Here, we describe a deep mutational scanning method to map how all amino-acid mutations in the RBD affect antibody binding, and apply this method to 10 human monoclonal antibodies. The escape mutations cluster on several surfaces of the RBD that broadly correspond to structurally defined antibody epitopes. However, even antibodies targeting the same RBD surface often have distinct escape mutations. The complete escape maps predict which mutations are selected during viral growth in the presence of single antibodies, and enable us to design escape-resistant antibody cocktails-including cocktails of antibodies that compete for binding to the same surface of the RBD but have different escape mutations. Therefore, complete escape-mutation maps enable rational design of antibody therapeutics and assessment of the antigenic consequences of viral evolution.

16.
Preprint in English | bioRxiv | ID: ppbiorxiv-141077

ABSTRACT

Cholesterol 25-hydroxylase (CH25H) is an interferon-stimulated gene (ISG) that shows broad antiviral activities against a wide range of enveloped viruses. Here, using an ISG screen against VSV-SARS-CoV and VSV-SARS-CoV-2 chimeric viruses, we identified CH25H and its enzymatic product 25-hydroxycholesterol (25HC) as potent inhibitors of virus replication. Mechanistically, internalized 25HC accumulates in the late endosomes and blocks cholesterol export, thereby restricting SARS-CoV-2 spike protein catalyzed membrane fusion. Our results highlight a unique antiviral mechanism of 25HC and provide the molecular basis for its possible therapeutic development.

17.
Preprint in English | bioRxiv | ID: ppbiorxiv-102038

ABSTRACT

Antibody-based interventions against SARS-CoV-2 could limit morbidity, mortality, and possibly disrupt epidemic transmission. An anticipated correlate of such countermeasures is the level of neutralizing antibodies against the SARS-CoV-2 spike protein, yet there is no consensus as to which assay should be used for such measurements. Using an infectious molecular clone of vesicular stomatitis virus (VSV) that expresses eGFP as a marker of infection, we replaced the glycoprotein gene (G) with the spike protein of SARS-CoV-2 (VSV-eGFP-SARS-CoV-2) and developed a high-throughput imaging-based neutralization assay at biosafety level 2. We also developed a focus reduction neutralization test with a clinical isolate of SARS-CoV-2 at biosafety level 3. We compared the neutralizing activities of monoclonal and polyclonal antibody preparations, as well as ACE2-Fc soluble decoy protein in both assays and find an exceptionally high degree of concordance. The two assays will help define correlates of protection for antibody-based countermeasures including therapeutic antibodies, immune {gamma}-globulin or plasma preparations, and vaccines against SARS-CoV-2. Replication-competent VSV-eGFP-SARS-CoV-2 provides a rapid assay for testing inhibitors of SARS-CoV-2 mediated entry that can be performed in 7.5 hours under reduced biosafety containment.

18.
Preprint in English | bioRxiv | ID: ppbiorxiv-054015

ABSTRACT

Both gastrointestinal symptoms and fecal shedding of SARS-CoV-2 RNA have been frequently observed in COVID-19 patients. However, whether SARS-CoV-2 replicate in the human intestine and its clinical relevance to potential fecal-oral transmission remain unclear. Here, we demonstrate productive infection of SARS-CoV-2 in ACE2+ mature enterocytes in human small intestinal enteroids. In addition to TMPRSS2, another mucosa-specific serine protease, TMPRSS4, also enhanced SARS-CoV-2 spike fusogenic activity and mediated viral entry into host cells. However, newly synthesized viruses released into the intestinal lumen were rapidly inactivated by human colonic fluids and no infectious virus was recovered from the stool specimens of COVID-19 patients. Our results highlight the intestine as a potential site of SARS-CoV-2 replication, which may contribute to local and systemic illness and overall disease progression.

19.
Preprint in English | bioRxiv | ID: ppbiorxiv-053058

ABSTRACT

Virus entry is a multistep process. It initiates when the virus attaches to the host cell and ends when the viral contents reach the cytosol. Genetically unrelated viruses can subvert analogous subcellular mechanisms and use similar trafficking pathways for successful entry. Antiviral strategies targeting early steps of infection are therefore appealing, particularly when the probability for successful interference through a common step is highest. We describe here potent inhibitory effects on content release and infection by chimeric VSV containing the envelope proteins of Zaire ebolavirus (VSV-ZEBOV) or SARS-CoV-2 (VSV-SARS-CoV-2) elicited by Apilimod and Vacuolin-1, small molecule inhibitors of the main endosomal Phosphatidylinositol-3-Phosphate/Phosphatidylinositol 5-Kinase, PIKfyve. We also describe potent inhibition of SARS-CoV-2 strain 2019-nCoV/USA-WA1/2020 by Apilimod. These results define new tools for studying the intracellular trafficking of pathogens elicited by inhibition of PIKfyve kinase and suggest the potential for targeting this kinase in developing small-molecule antivirals against SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL
...