Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38999023

ABSTRACT

A series of 21 new 7'H-spiro[azetidine-3,5'-furo [3,4-d]pyrimidine]s substituted at the pyrimidine ring second position were synthesized. The compounds showed high antibacterial in vitro activity against M. tuberculosis. Two compounds had lower minimum inhibitory concentrations against Mtb (H37Rv strain) compared with isoniazid. The novel spirocyclic scaffold shows excellent properties for anti-tuberculosis drug development.


Subject(s)
Antitubercular Agents , Azetidines , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Nitrofurans , Spiro Compounds , Mycobacterium tuberculosis/drug effects , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Antitubercular Agents/chemical synthesis , Azetidines/chemistry , Azetidines/pharmacology , Nitrofurans/pharmacology , Nitrofurans/chemistry , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Spiro Compounds/chemical synthesis , Structure-Activity Relationship , Molecular Structure
2.
Life (Basel) ; 12(4)2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35455067

ABSTRACT

The current study was done in Wistar Albino Glaxo Rijswijk (WAG/Rij) rats, which are genetically prone to develop spontaneous spike-wave discharges (SWDs) and are widely used as a genetic model of absence epilepsy. Here, we examined functional links between sleep and spike-wave epilepsy in aging WAG/Rij rats using advanced techniques of EEG analysis. SWDs, periods of NREM sleep and micro-arousals were automatically detected in three-channel epidural EEG recorded in freely moving WAG/Rij rats consequently at the age 5, 7 and 9 months. We characterized the developmental profile of spike-wave epilepsy in drug-naïve WAG/Rij rats and defined three epi-phenotypes-severe, mild and minor epilepsy. Age-related changes of SWDs were associated with changes in NREM sleep. Several signs of NREM sleep fragmentation were defined in epileptic WAG/Rij rats. It seems that spike-wave epilepsy per se promotes micro-arousals during NREM sleep. However, subjects with a higher number of micro-arousals (and NREM sleep episodes) at the age of 5 months were characterized by a reduction of SWDs between 5 and 7 months of age.

3.
Chaos ; 31(9): 093116, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34598440

ABSTRACT

This article proposes a modification of joint recurrence quantification analysis for identifying individual characteristics applied to human electroencephalography (EEG) using short time series. Statistical analysis of EEG characteristics facilitated the clarification of the spatial localization of identified individual characteristics. The method can be adapted for use as a stage of a rapid automatic configuration of brain-computer interface devices, which is especially relevant when working with children, due to limited opportunities for their long-term monitoring.


Subject(s)
Brain-Computer Interfaces , Neoplasms , Electroencephalography , Humans
4.
Sci Rep ; 9(1): 18325, 2019 12 04.
Article in English | MEDLINE | ID: mdl-31797968

ABSTRACT

Neuronal brain network is a distributed computing system, whose architecture is dynamically adjusted to provide optimal performance of sensory processing. A small amount of visual information needed effortlessly be processed, activates neural activity in occipital and parietal areas. Conversely, a visual task which requires sustained attention to process a large amount of sensory information, involves a set of long-distance connections between parietal and frontal areas coordinating the activity of these distant brain regions. We demonstrate that while neural interactions result in coherence, the strongest connection is achieved through coherence resonance induced by adjusting intrinsic brain noise.

5.
Chaos ; 29(9): 093110, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31575147

ABSTRACT

Machine learning is a promising approach for electroencephalographic (EEG) trials classification. Its efficiency is largely determined by the feature extraction and selection techniques reducing the dimensionality of input data. Dimensionality reduction is usually implemented via the mathematical approaches (e.g., principal component analysis, linear discriminant analysis, etc.) regardless of the origin of analyzed data. We hypothesize that since EEG features are determined by certain neurophysiological processes, they should have distinctive characteristics in spatiotemporal domain. If so, it is possible to specify the set of EEG principal features based on the prior knowledge about underlying neurophysiological processes. To test this hypothesis, we consider the classification of EEG trials related to the perception of ambiguous visual stimuli. We observe that EEG features, underlying the different ambiguous stimuli interpretations, are defined by the network properties of neuronal activity. Having analyzed functional neural interactions, we specify the brain area in which neural network architecture exhibits differences for different classes of EEG trials. We optimize the feedforward multilayer perceptron and develop a strategy for the training set selection to maximize the classification accuracy, being 85% when all channels are used. The revealed localization of the percept-related features allows about 95% accuracy, when the number of channels is reduced up to 90%. Obtained results can be used for classification of EEG trials associated with more complex cognitive tasks. Taking into account that cognitive activity is subserved by a distributed functional cortical network, its topological properties have to be considered when selecting optimal features for EEG trial classification.


Subject(s)
Brain/physiology , Electroencephalography , Machine Learning , Nerve Net/physiology , Adult , Female , Humans , Male
6.
Chaos ; 23(3): 033129, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24089965

ABSTRACT

A phenomenon of intermittency of intermittencies is discovered in the temporal behavior of two coupled complex systems. We observe for the first time the coexistence of two types of intermittent behavior taking place simultaneously near the boundary of the synchronization regime of coupled chaotic oscillators. This phenomenon is found both in the numerical and physiological experiments. The laws for both the distribution and mean length of laminar phases versus the control parameter values are analytically deduced. A very good agreement between the theoretical results and simulation is shown.

7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(2 Pt 2): 027201, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21405931

ABSTRACT

In this Brief Report we study both experimentally and numerically the intermittent behavior taking place near the boundary of the synchronous time scales of chaotic oscillators being in the regime of time scale synchronization. We have shown that the observed type of the intermittent behavior should be classified as the ring intermittency.

SELECTION OF CITATIONS
SEARCH DETAIL
...