Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(11)2021 May 24.
Article in English | MEDLINE | ID: mdl-34073821

ABSTRACT

Using the density functional theory with the hybrid functional B3LYP and the basis of localized orbitals of the CRYSTAL17 program code, the dependences of the wavenumbers of normal long-wave ν vibrations on the P(GPa) pressure ν(cm-1) = ν0 + (dv/dP)·P + (d2v/dP2)·P and structural parameters R(Å) (R: a, b, c, RM-O, RC-O): ν(cm-1) = ν0 + (dv/dR) - (R - R0) were calculated. Calculations were made for crystals with the structure of calcite (MgCO3, ZnCO3, CdCO3), dolomite (CaMg(CO3)2, CdMg(CO3)2, CaZn(CO3)2) and aragonite (SrCO3, BaCO3, PbCO3). A comparison with the experimental data showed that the derivatives can be used to determine the P pressures, a, b, c lattice constants and the RM-O metal-oxygen, and the RC-O carbon-oxygen interatomic distances from the known Δν shifts. It was found that, with the increasing pressure, the lattice constants and distances R decrease, and the wavenumbers increase with velocities the more, the higher the ν0 is. The exceptions were individual low-frequency lattice modes and out-of-plane vibrations of the v2-type carbonate ion, for which the dependences are either nonlinear or have negative dv/dP (positive dv/dR) derivatives. The reason for this lies in the properties of chemical bonding and the nature of atomic displacements during these vibrations, which cause a decrease in RM-O and an increase in RC-O.

2.
Nanomaterials (Basel) ; 10(11)2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33212956

ABSTRACT

Within the framework of the density functional theory (DFT) and the hybrid functional B3LYP by means of the CRYSTAL17 program code, the wavenumbers and intensities of normal oscillations of MgCO3, CaCO3, ZnCO3, CdCO3 in the structure of calcite; CaMg(CO3)2, CdMg(CO3)2, CaMn(CO3)2, CaZn(CO3)2 in the structure of dolomite; BaMg(CO3)2 in the structure of the norsethite type; and CaCO3, SrCO3, BaCO3, and PbCO3 in the structure of aragonite were calculated. Infrared absorption and Raman spectra were compared with the known experimental data of synthetic and natural crystals. For lattice and intramolecular modes, linear dependences on the radius and mass of the metal cation are established. The obtained dependences have predictive power and can be used to study solid carbonate solutions. For trigonal and orthorhombic carbonates, the linear dependence of wavenumbers on the cation radius RM (or M-O distance) is established for the infrared in-plane bending mode: 786.2-65.88·RM and Raman in-plane stretching mode: 768.5-53.24·RM, with a correlation coefficient of 0.87.

3.
Phys Chem Chem Phys ; 13(13): 5679-86, 2011 Apr 07.
Article in English | MEDLINE | ID: mdl-21308146

ABSTRACT

We investigated the electronic structure of crystalline naphthalene and anthracene within the framework of density functional theory including van der Waals interactions (DFT-D). It is established that for better agreement with experimental values it is necessary to use the increased values of the van der Waals radii, which is caused by an overestimated value of the van der Waals interactions in crystalline linear oligoacenes. Utilization of the DFT-D leads to a correct account of the dispersion forces, which results in a high precision of the computed lattice parameters and cohesive energy. Based on the relaxed crystal structures, we have computed the total and deformation electron density and determined the mechanism of chemical bonds formation in crystals of naphthalene and anthracene. It has been established that the chemical bond in molecular crystals is formed under the influence of not only intramolecular but also intermolecular interactions. On the basis of the Mulliken population analysis it was revealed that two C(3) atoms in naphthalene (or C(3) and C(4) in anthracene) have a positive charge and the population of the rest of the carbon atoms increased, as compared with isolated molecule.

SELECTION OF CITATIONS
SEARCH DETAIL
...