Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(6): e0304141, 2024.
Article in English | MEDLINE | ID: mdl-38843250

ABSTRACT

Lynch syndrome is caused by inactivating variants in DNA mismatch repair genes, namely MLH1, MSH2, MSH6 and PMS2. We have investigated five MLH1 and one MSH2 variants that we have identified in Turkish and Tunisian colorectal cancer patients. These variants comprised two small deletions causing frameshifts resulting in premature stops which could be classified pathogenic (MLH1 p.(His727Profs*57) and MSH2 p.(Thr788Asnfs*11)), but also two missense variants (MLH1 p.(Asn338Ser) and p.(Gly181Ser)) and two small, in-frame deletion variants (p.(Val647-Leu650del) and p.(Lys678_Cys680del)). For such small coding genetic variants, it is unclear if they are inactivating or not. We here provide clinical description of the variant carriers and their families, and we performed biochemical laboratory testing on the variant proteins to test if their stability or their MMR activity are compromised. Subsequently, we compared the results to in-silico predictions on structure and conservation. We demonstrate that neither missense alteration affected function, while both deletion variants caused a dramatic instability of the MLH1 protein, resulting in MMR deficiency. These results were consistent with the structural analyses that were performed. The study shows that knowledge of protein function may provide molecular explanations of results obtained with functional biochemical testing and can thereby, in conjunction with clinical information, elevate the evidential value and facilitate clinical management in affected families.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , DNA Mismatch Repair , MutL Protein Homolog 1 , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Humans , Male , MutL Protein Homolog 1/genetics , Female , DNA Mismatch Repair/genetics , Middle Aged , MutS Homolog 2 Protein/genetics , Adult , Tunisia , Pedigree , Turkey , Aged , Mutation, Missense
2.
Cureus ; 16(3): e56562, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38646331

ABSTRACT

BACKGROUND: Acne vulgaris (AV) is an inflammatory skin disease caused by the mechanistic target of rapamycin complex 1 (mTORC1). forkhead box protein (Fox) O1 is known to regulate the relationship between the mTORC1 signaling pathway and insulin resistance (IR). Increased mTORC1 signaling is known to predispose one to diseases such as insulin resistance (IR), obesity, and diabetes mellitus. One of the major components of mTORC1 is mTOR. FoxO1 and mTOR play key roles in the onset and progression of metabolic syndrome (MetS). In this study, we aimed to elucidate the relationship between AV and MetS through FoxO1 and mTOR signaling pathways and microRNAs (miRs) associated with these signaling pathways. METHODS: We examined 20 AV patients without MetS, 16 AV patients with MetS, and 20 healthy controls. The demographic characteristics of the patients, MetS parameters, clinical severity of AV (Global Acne Grading System, GAGS), and the homeostasis model assessment (HOMA) values were compared between the groups. In addition, the expression levels of FoxO1 and mTOR genes, along with the expression levels of miR-21, miR-29b, and miR-98, were assessed in skin biopsy samples from all groups using real-time polymerase chain reaction methods. FoxO1, mTOR, and miRNA expression levels were recorded as fold change. RESULTS: The mean age of patients with AV without MetS was statistically lower. In AV patients with MetS, those with moderate GAGS scores had statistically significantly higher HOMA values than those with mild GAGS scores. FoxO1 expression was significantly lower in AV patients compared to controls. The mTOR expression levels of AV patients with MetS were significantly higher than the other two groups. The expression levels of miR-21 and miR-29b were significantly increased in the group of AV patients with MetS compared to the group of AV patients without MetS. CONCLUSIONS: These results suggested that the mTOR pathway may play an important role in explaining the relationship between AV and MetS in acne pathogenesis. They also suggested that miR-21 and miR-29b play a role in the inflammatory process of AV.

3.
Mol Syndromol ; 15(1): 43-50, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38357263

ABSTRACT

Introduction: Okur-Chung neurodevelopmental syndrome (OCNDS; #617062) has been associated with heterozygous mutations in the CSNK2A1 gene (*115440) mapped on the chromosome's 20p13 region. Case Presentation: The analysis was performed on a 2-year-old patient who was admitted to our genetic diseases evaluation center by his family with a complaint of hypotonia. We detected a heterozygous NM_177559.3 (CSNK2A1):c.1139_1140dupGG (p.Met381GlyfsTer32) variant in the CSNK2A1 gene from a whole-exome sequence analysis. Conclusion: The variant that we detected has not been reported in open-access databases to date, so it was evaluated as a novel likely pathogenic variant according to the ACMG-2015 criteria. No variant was detected upon segregation analysis of the patient's parents; therefore, the related variant was evaluated as de novo. In this study, we offer the first report of a pathogenic frameshift variant in the CSNK2A1 gene that has a relationship with OCNDS.

4.
Glob Med Genet ; 10(2): 117-122, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37332684

ABSTRACT

This study aimed to define the copy numbers of SMN1 and SMN2 genes and the diagnosis rate and carrier frequency of spinal muscular atrophy (SMA) in the Thrace region of Turkey. In this study, the frequency of deletions in exons 7 and 8 in the SMN1 gene and SMN2 copy numbers were investigated. A total of 133 cases with the preliminary diagnosis of SMA and 113 cases with the suspicion of being an SMA carrier from independent families were analyzed by multiplex ligation-dependent probe amplification method for SMN1 and SMN2 gene copy numbers. SMN1 homozygous deletions were detected in 34 patients (25.5%) of 133 cases with the suspicion of SMA. Cases diagnosed with SMA type I was 41.17% (14/34), 29.4% (10/34) with type II, 26.4% (9/34) with type III, and 2.94% (1/34) with type IV. The SMA carrier rate was 46.01% in 113 cases. In 34 SMA cases, SMN2 copy numbers were: two copies - 28 cases (82.3%), three copies - 6 cases (17.6%). SMN2 homozygous deletions were detected in 15% (17/113) of carrier analysis cases. The consanguinity rate of the parents was 23.5% in SMA diagnosed cases. In this study, we had a 25.5% of SMA diagnosis rate and 46% SMA carrier frequency. The current study also showed the relatively low consanguinity rate of the Thrace region, with 23.5% according to the east of Turkey.

5.
Glob Med Genet ; 9(3): 226-236, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36071912

ABSTRACT

Introduction Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder caused by the degeneration of motor neurons, muscle weakness, and atrophy that leads to infant's death. The duplication of exon 7/8 in the SMN2 gene reduces the clinical severity of disease, and it is defined as modifying effect. In this study, we aim to investigate the expression of modifying genes related to the prognosis of SMA like PLS3 , PFN2 , ZPR1 , CORO1C , GTF2H2 , NRN1 , SERF1A , NCALD , NAIP , and TIA1. Methods Seventeen patients, who came to Trakya University, Faculty of Medicine, Medical Genetics Department, with a preliminary diagnosis of SMA disease, and eight healthy controls were included in this study after multiplex ligation-dependent probe amplification analysis. Gene expression levels were determined by real-time reverse transcription polymerase chain reaction and delta-delta CT method by the isolation of RNA from peripheral blood of patients and controls. Results SERF1A and NAIP genes compared between A group and B + C + D groups, and A group of healthy controls, showed statistically significant differences ( p = 0.037, p = 0.001). Discussion PLS3, NAIP , and NRN1 gene expressions related to SMA disease have been reported before in the literature. In our study, the expression levels of SERF1A , GTF2H2 , NCALD , ZPR1 , TIA1 , PFN2 , and CORO1C genes have been studied for the first time in SMA patients.

6.
Mol Syndromol ; 13(3): 235-239, 2022 May.
Article in English | MEDLINE | ID: mdl-35707598

ABSTRACT

Jacobsen syndrome is a rare congenital disorder that is caused by the deletion of several genes in chromosome 11. A 10-year-old female with congenital heart disease, dextrocardia, and coarse facial appearance was examined in our medical genetics clinic. Chromosome analysis and array-CGH showed a copy number loss of 9 Mb in the 11q24.2q25 region. Herein, we report her clinical findings. This is the first case of Jacobsen syndrome with dextrocardia.

7.
Noro Psikiyatr Ars ; 58(3): 171-175, 2021.
Article in English | MEDLINE | ID: mdl-34526837

ABSTRACT

INTRODUCTION: Autism spectrum disorder is a genetically and phenotypically heterogeneous group. Genetic studies carried out to date have suggested that both common and rare genetic variants play a role in the etiology of this disorder. In our study, we aimed to investigate the effect of FOXP2, GRIN2B, KATNAL2 and GABRA4 gene variants in the pathogenesis of autism spectrum disorder. METHOD: In our prospectively planned study, all exons and exon-intron junctions of FOXP2, GRIN2B, KATNAL2 and GABRA4 genes were screened by next generation sequencing analysis in 96 patients who diagnosed with autism spectrum disorder. RESULTS: In our study, the average age was 10.1 and the male/female ratio was 75/21. Pathogenic or likely pathogenic variants were not detected in FOXP2, GRIN2B, KATNAL2 and GABRA4 genes, however, 69 intronic variants of unknown clinical significance were detected in 50 cases (52%). Among those, 26 were in the GABRA4 gene, 22 in the FOXP2 gene, 13 in the KATNAL2 gene, and 8 in the GRIN2B gene. Twenty three of these 69 variants were novel that were not previously reported in the literature. CONCLUSION: In our study, we could not identify a relationship between the autism spectrum disorder and FOXP2, GRIN2B, KATNAL2 and GABRA4 genes. Identifying genetic risk factors that play a role in the etiopathogenesis of autism spectrum disorder will contribute significantly to understanding the molecular mechanisms of the disease and the development of new treatment strategies. In this context, comprehensive molecular genetic studies such as whole exome or whole genome sequencing are required with higher number of cases in different populations.

SELECTION OF CITATIONS
SEARCH DETAIL
...