Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(6): 7262-7268, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38371851

ABSTRACT

Amorphous transparent conducting oxides (a-TCOs) have seen substantial interest in recent years due to the significant benefits that they can bring to transparent electronic devices. One such material of promise is amorphous ZnxSn1-xOy (a-ZTO). a-ZTO possesses many attractive properties for a TCO such as high transparency in the visible range, tunable charge carrier concentration, electron mobility, and only being composed of common and abundant elements. In this work, we employ a combination of UV-vis spectrophotometry, X-ray photoemission spectroscopy, and in situ scanning tunneling spectroscopy to investigate a 0.33 eV blue shift in the optical bandgap of a-ZTO, which we conclude to be due to quantum confinement effects.

2.
Sci Rep ; 14(1): 2331, 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38281983

ABSTRACT

Sb is a three-dimensional Peierls insulator. The Peierls instability gives rise to doubling of the translational period along the [111] direction and alternating van der Waals and covalent bonding between (111) atomic planes. At the (111) surface of Sb, the Peierls condition is violated, which in theory can give rise to properties differing from the bulk. The atomic and electronic structure of the (111) surface of Sb have been simulated by density functional theory calculations. We have considered the two possible (111) surfaces, containing van der Waals dangling bonds or containing covalent dangling bonds. In the models, the surfaces are infinite and the structure is defect free. Structural optimization of the model containing covalent dangling bonds results in strong deformation, which is well described by a topological soliton within the Su-Schrieffer-Heeger model centered about 25 Å below the surface. The electronic states associated with the soliton see an increase in the density of states (DOS) at the Fermi level by around an order of magnitude at the soliton center. Scanning tunneling microscopy and spectroscopy (STM/STS) measurements reveal two distinct surface regions, indicating that there are different surface regions cleaving van der Waals and covalent bonds. The DFT is in good agreement with the STM/STS experiments.

3.
ACS Omega ; 8(33): 30768-30775, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37636914

ABSTRACT

Silicon nitride, silicon oxide, and silicon oxynitride thin films were deposited on the Si substrate by inductively coupled plasma chemical vapor deposition and annealed at 1100 °C for 3 min in an Ar environment. Silicon nitride and silicon oxide films deposited at ratios of the reactant flow rates of SiH4/N2 = 1.875 and SiH4/N2O = 3, respectively, were Si-rich, while Si excess for the oxynitride film (SiH4/N2/N2O = 3:2:2) was not found. Annealing resulted in a thickness decrease and structural transformation for SiOx and SiNx films. Nanocrystalline phases of Si as well as α- and ß-Si3N4 were found in the annealed silicon nitride film. Compared to oxide and nitride films, the oxynitride film is the least susceptible to change during annealing. The relationship between the structure, composition, and optical properties of the Si-based films has been revealed. It has been shown that the calculated optical parameters (refractive index, extinction coefficient) reflect structural peculiarities of the as-deposited and annealed films.

4.
RSC Adv ; 13(22): 14974-14979, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37200699

ABSTRACT

Metal-doped carbon dots have attracted considerable attention in nanomedicine over the last decade owing to their high biocompatibility and great potential for bioimaging, photothermal therapy, and photodynamic therapy. In this study, we prepared, and for the first time, examined terbium-doped CDs (Tb-CDs) as a novel contrast agent for computed tomography. A detailed physicochemical analysis revealed that the prepared Tb-CDs have small sizes (∼2-3 nm), contain relatively high terbium concentration (∼13.3 wt%), and exhibit excellent aqueous colloidal stability. Furthermore, preliminary cell viability and CT measurements suggested that Tb-CDs exhibit negligible cytotoxicity toward L-929 cells and demonstrate high X-ray absorption performance (∼48.2 ± 3.9 HU L g-1). Based on these findings, the prepared Tb-CDs could serve as a promising contrast agent for efficient X-ray attenuation.

5.
Materials (Basel) ; 15(21)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36363246

ABSTRACT

The strongly correlated electron material, vanadium dioxide (VO2), has seen considerable attention and research application in metal-oxide electronics due to its metal-to-insulator transition close to room temperature. Vacuum annealing a V2O5(010) single crystal results in Wadsley phases (VnO2n+1, n > 1) and VO2. The resistance changes by a factor of 20 at 342 K, corresponding to the metal-to-insulator phase transition of VO2. Macroscopic voltage-current measurements with a probe separation on the millimetre scale result in Joule heating-induced resistive switching at extremely low voltages of under a volt. This can reduce the hysteresis and facilitate low temperature operation of VO2 devices, of potential benefit for switching speed and device stability. This is correlated to the low resistance of the system at temperatures below the transition. High-resolution transmission electron microscopy measurements reveal a complex structural relationship between V2O5, VO2 and V6O13 crystallites. Percolation paths incorporating both VO2 and metallic V6O13 are revealed, which can reduce the resistance below the transition and result in exceptionally low voltage resistive switching.

6.
Chem Mater ; 34(7): 3020-3027, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35431441

ABSTRACT

Oxide semiconductors are penetrating into a wide range of energy, environmental, and electronic applications, possessing a potential to outrun currently employed semiconductors. However, an insufficient development of p-type oxides is a major obstacle against complete oxide electronics. Quite often oxide deposition is performed by the spray pyrolysis method, inexpensive to implement and therefore accessible to a large number of laboratories. Although, the complex growth chemistry and a lack of in situ monitoring during the synthesis process can complicate the growth optimization of multicomponent oxides. Here we present a concept of plasmonic, optical sensing that has been applied to spray pyrolysis oxide film growth monitoring for the first time. The proposed method utilizes a polarization based refractive index sensing platform using Au nanodimers as transducing elements. As a proof of concept, the changes in the refractive index of the grown film were extracted from individual Cu(acac)2 and Cr(acac)3 precursors in real time to reveal their thermal decomposition processes. Obtained activation energies give insight into the physical origin of the narrow temperature window for the synthesis of high performing p-type transparent conducting copper chromium oxide Cu x CrO2. The versatility of the proposed method makes it effective in the growth rate monitoring of various oxides, exploring new candidate materials and optimizing the synthesis conditions for acquisition of high performing oxides synthesized by a high throughput cost-effective method.

7.
J Phys Chem C Nanomater Interfaces ; 125(10): 5549-5558, 2021 Mar 18.
Article in English | MEDLINE | ID: mdl-34276852

ABSTRACT

Defects introduced to the surface of Bi(111) break the translational symmetry and modify the surface states locally. We present a theoretical and experimental study of the 2D defects on the surface of Bi(111) and the states that they induce. Bi crystals cleaved in ultrahigh vacuum (UHV) at low temperature (110 K) and the resulting ion-etched surface are investigated by low-energy electron diffraction (LEED), X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy (UPS), and scanning tunneling microscopy (STM) as well as spectroscopy (STS) techniques in combination with density functional theory (DFT) calculations. STS measurements of cleaved Bi(111) reveal that a commonly observed bilayer step edge has a lower density of states (DOS) around the Fermi level as compared to the atomic-flat terrace. Following ion bombardment, the Bi(111) surface reveals anomalous behavior at both 110 and 300 K: Surface periodicity is observed by LEED, and a significant increase in the number of bilayer step edges and energetically unfavorable monolayer steps is observed by STM. It is suggested that the newly exposed monolayer steps and the type A bilayer step edges result in an increase to the surface Fermi density as evidenced by UPS measurements and the Kohn-Sham DOS. These states appear to be thermodynamically stable under UHV conditions.

8.
ACS Nano ; 14(12): 16576-16589, 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33136362

ABSTRACT

Renewed interest in the ferroelectric semiconductor germanium telluride was recently triggered by the direct observation of a giant Rashba effect and a 30-year-old dream about a functional spin field-effect transistor. In this respect, all-electrical control of the spin texture in this material in combination with ferroelectric properties at the nanoscale would create advanced functionalities in spintronics and data information processing. Here, we investigate the atomic and electronic properties of GeTe bulk single crystals and their (111) surfaces. We succeeded in growing crystals possessing solely inversion domains of ∼10 nm thickness parallel to each other. Using HAADF-TEM we observe two types of domain boundaries, one of them being similar in structure to the van der Waals gap in layered materials. This structure is responsible for the formation of surface domains with preferential Te-termination (∼68%) as we determined using photoelectron diffraction and XPS. The lateral dimensions of the surface domains are in the range of ∼10-100 nm, and both Ge- and Te-terminations reveal no reconstruction. Using spin-ARPES we establish an intrinsic quantitative relationship between the spin polarization of pure bulk states and the relative contribution of different terminations, a result that is consistent with a reversal of the spin texture of the bulk Rashba bands for opposite configurations of the ferroelectric polarization within individual nanodomains. Our findings are important for potential applications of ferroelectric Rashba semiconductors in nonvolatile spintronic devices with advanced memory and computing capabilities at the nanoscale.

9.
ACS Appl Mater Interfaces ; 12(41): 46892-46899, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-32955846

ABSTRACT

Transparent conductive oxides (TCOs) are important materials for a wide range of optoelectronic devices. Amorphous zinc tin oxide (a-ZTO) is a TCO and one of the best nontoxic, low-cost replacements for more expensive amorphous indium-gallium-zinc oxide. Here, we employ spray pyrolysis (SP), an inexpensive and versatile chemical vapor deposition-based technique, to synthesize a-ZTO with an as-deposited conductivity of ≈300 S/cm-the highest value hitherto among the reported solution-processed films. Compositional analysis via X-ray photoelectron spectroscopy reveals a nonstoichiometric transfer of Zn and Sn from the dissolved precursors into the film, with the best electrical properties achieved at a film composition of xfilm = 0.38 ± 0.04 ((ZnO)x(SnO2)1-x (0 < x < 1)). The morphology of these films is compared to films synthesized by physical vapor deposition (PVD), and a strong correlation between morphology and electrical properties is revealed. The granular nature of the SP-grown films, which seems like a drawback at first glance, brings about the prospect of using a-ZTO in ink-jet-printed films from a nanoparticle suspension for the room-temperature deposition. Brief post-anneal cycles in N2 gas improve the conductivity of the films by means of grain boundary (GB) passivation.

10.
Nanomaterials (Basel) ; 10(6)2020 Jun 08.
Article in English | MEDLINE | ID: mdl-32521694

ABSTRACT

Transparent titanium oxide thin films attract enormous attention from the scientific community because of their prominent properties, such as low-cost, chemical stability, and optical transparency in the visible region. In this study, we developed an easy and scalable solution-based process for the deposition of transparent TiOx thin films on glass substrates. We showed that the proposed method is also suitable for the fabrication of metal-doped TiOx thin films. As proof-of-the-concept, europium Eu(III) ions were introduced into TiOx film. A photoluminescence (PL) study revealed that Eu-doped TiOx thin films showed strong red luminescence associated with 5D0→7Fj relaxation transitions in Eu (III). We found that prepared TiOx thin films significantly reduce the transmittance of destructive UV radiation; a feature that can be useful for the protection of photovoltaic devices. In addition, transparent and luminescent TiOx thin films can be utilized for potential security labeling.

11.
Nanotechnology ; 31(37): 375601, 2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32498057

ABSTRACT

The synthesis of transition metal dichalcogenides (TMDs) has been a primary focus for 2D nanomaterial research over the last 10 years, however, only a small fraction of this research has been concentrated on transition metal ditellurides. In particular, nanoscale platinum ditelluride (PtTe2) has rarely been investigated, despite its potential applications in catalysis, photonics and spintronics. Of the reports published, the majority examine mechanically-exfoliated flakes from chemical vapor transport (CVT) grown crystals. This method produces high quality-crystals, ideal for fundamental studies. However, it is very resource intensive and difficult to scale up meaning there are significant obstacles to implementation in large-scale applications. In this report, the synthesis of thin films of PtTe2 through the reaction of solid-phase precursor films is described. This offers a production method for large-area, thickness-controlled PtTe2, potentially suitable for a number of applications. These polycrystalline PtTe2 films were grown at temperatures as low as 450 °C, significantly below the typical temperatures used in the CVT synthesis methods. Adjusting the growth parameters allowed the surface coverage and morphology of the films to be controlled. Analysis with scanning electron- and scanning tunneling microscopy indicated grain sizes of above 1 µm could be achieved, comparing favorably with typical values of ∼50 nm for polycrystalline films. To investigate their potential applicability, these films were examined as electrocatalysts for the hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR). The films showed promising catalytic behavior, however, the PtTe2 was found to undergo chemical transformation to a substoichiometric chalcogenide compound under ORR conditions. This study shows while PtTe2 is stable and highly useful for in HER, this property does not apply to ORR, which undergoes a fundamentally different mechanism. This study broadens our knowledge on the electrocatalysis of TMDs.

12.
Sci Rep ; 10(1): 3794, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-32123233

ABSTRACT

NbO terminated Nb(110) and its oxidation are examined by scanning tunneling microscopy and spectroscopy (STS). The oxide structures are strongly influenced by the structural and electronic properties of the underlying NbO substrate. The NbO is terminated by one-dimensional few-nanometer nanocrystals, which form an ordered pattern. High-resolution STS measurements reveal that the nanocrystals and the regions between the nanocrystals exhibit different electronic characters. Low-dosage oxidation, sufficient for sub-monolayer coverage of the NbO, with subsequent UHV annealing results in the formation of resolved sub-nanometer clusters, positioned in-between the nanocrystals. Higher dosage oxidation results in the formation of a closed Nb2O5-y layer, which is confirmed by X-ray photoelectron spectroscopy measurements. The pentoxide is amorphous at the atomic-scale. However, large scale (tens of nanometers) structures are observed with their symmetry matching that of the underlying nanocrystals.

13.
RSC Adv ; 10(69): 42001-42007, 2020 Nov 17.
Article in English | MEDLINE | ID: mdl-35516737

ABSTRACT

We employ a combination of scanning tunnelling microscopy (STM) and scanning tunnelling spectroscopy (STS) to investigate the properties of layered PtS2, synthesised via thermally assisted conversion (TAC) of a metallic Pt thin film. STM measurements reveal the 1T crystal structure of PtS2, and the lattice constant is determined to be 3.58 ± 0.03 Å. STS allowed the electronic structure of individual PtS2 crystallites to be directly probed and a bandgap of ∼1.03 eV was determined for a 3.8 nm thick flake at liquid nitrogen temperature. These findings substantially expand understanding of the atomic and electronic structure of PtS2 and indicate that STM is a powerful tool capable of locally probing non-uniform polycrystalline films, such as those produced by TAC. Prior to STM/STS measurements the quality of synthesised TAC PtS2 was analysed by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. These results are of relevance to applications-focussed studies centred on PtS2 and may inform future efforts to optimise the synthesis conditions for thin film PtS2.

14.
ACS Nano ; 13(1): 526-535, 2019 Jan 22.
Article in English | MEDLINE | ID: mdl-30525448

ABSTRACT

The mechanism of few-layer graphene growth on the technologically relevant cubic-SiC/Si(001) substrate is uncovered using high-resolution core-level and angle-resolved photoelectron spectroscopy, low-energy electron microscopy, and microspot low-energy electron diffraction. The thickness of the graphitic overlayer supported on the silicon carbide substrate and related changes in the surface structure are precisely controlled by monitoring the progress of the surface graphitization in situ during high-temperature graphene synthesis, using a combination of microspectroscopic techniques. The experimental data reveal gradual changes in the preferential graphene lattice orientations at the initial stages of the few-layer graphene growth on SiC(001) and can act as reference data for controllable growth of single-, double-, and triple-layer graphene on silicon carbide substrates.

SELECTION OF CITATIONS
SEARCH DETAIL
...