Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 880: 162753, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37019238

ABSTRACT

Understanding the gap between potential productivity and the actual productivity of vegetation (vegetation productivity gap, VPG) is the basis to explore the potential productivity improvement and identify its constraints. In this study, we used the classification and regression tree model to simulate the potential net primary productivity (PNPP) based on the flux-observational maximum net primary productivity (NPP) across different vegetation types, that is, potential productivity. The actual NPP (ANPP) is obtained from the grid NPP averaged over five terrestrial biosphere models, and the VPG is subsequently calculated. On this basis, we used the variance decomposition method to separate the effects of climate change, land-use change, CO2, and nitrogen deposition on the trend and the interannual variability (IAV) of VPG from 1981 to 2010. Meanwhile, the spatiotemporal variation characteristics and influencing factors of VPG under future climate scenarios are analyzed. The results showed an increasing trend in PNPP and ANPP, while there was a decreasing trend of VPG in most parts of the world and this trend is more significant under representative concentration pathways (RCPs). The turning points (TP) of VPG variation are found under RCPs and the reduction trend of VPG before TP is more than that after TP. The VPG reduction in most regions was caused by the combined effects of PNPP and ANPP (41.68 %) from 1981 to 2010. However, the dominant factors of global VPG reduction are changing under RCPs, and the increment of NPP (39.71 % - 49.3 %) has become the dominating factor of VPG variation. CO2 plays a decisive role in the multi-year trend of VPG, while climate change is the main factor determining the IAV of VPG. Under changing climate, temperature and precipitation are negatively correlated with VPG in most parts of the world, and the relationship between radiation and VPG from weak negative to positive correlation.


Subject(s)
Carbon Dioxide , Ecosystem , Models, Theoretical , Climate Change , China
2.
Math Biosci Eng ; 20(1): 18-33, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36650755

ABSTRACT

For the UAV cluster task allocation problem, the particle swarm optimization algorithm has slow convergence speed, low fitness level, easy to fall into local minimum, and can not obtain the global optimal solution. Aiming at the shortcomings of the traditional particle swarm optimization algorithm, a quantized particle swarm optimization algorithm (named QPSO method) has been designed to adapt to the task allocation problem of UAV cluster in this paper. In this algorithm, the Schrodinger equation is used to construct the quantized particle motion rule, and the Monte Carlo method is used to construct the update mechanism of the quantized particle position. The experimental results show that in the three groups of experiments of reconnaissance, attack and damage, the proposed algorithm has high adaptability, fast convergence speed, reasonable task allocation of UAVs in the cluster, efficient use of UAVs, and the performance of QPSO algorithm is obviously better than the particle swarm optimization algorithm and the genetic algorithm.

SELECTION OF CITATIONS
SEARCH DETAIL
...