Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Pattern Anal Mach Intell ; 45(6): 6659-6673, 2023 06.
Article in English | MEDLINE | ID: mdl-33566759

ABSTRACT

The lack of large-scale real datasets with annotations makes transfer learning a necessity for video activity understanding. We aim to develop an effective method for few-shot transfer learning for first-person action classification. We leverage independently trained local visual cues to learn representations that can be transferred from a source domain, which provides primitive action labels, to a different target domain - using only a handful of examples. Visual cues we employ include object-object interactions, hand grasps and motion within regions that are a function of hand locations. We employ a framework based on meta-learning to extract the distinctive and domain invariant components of the deployed visual cues. This enables transfer of action classification models across public datasets captured with diverse scene and action configurations. We present comparative results of our transfer learning methodology and report superior results over state-of-the-art action classification approaches for both inter-class and inter-dataset transfer.


Subject(s)
Algorithms , Learning , Humans , Cues
2.
IEEE Trans Pattern Anal Mach Intell ; 41(8): 1828-1843, 2019 08.
Article in English | MEDLINE | ID: mdl-30106706

ABSTRACT

Recent data-driven approaches to scene interpretation predominantly pose inference as an end-to-end black-box mapping, commonly performed by a Convolutional Neural Network (CNN). However, decades of work on perceptual organization in both human and machine vision suggest that there are often intermediate representations that are intrinsic to an inference task, and which provide essential structure to improve generalization. In this work, we explore an approach for injecting prior domain structure into neural network training by supervising hidden layers of a CNN with intermediate concepts that normally are not observed in practice. We formulate a probabilistic framework which formalizes these notions and predicts improved generalization via this deep supervision method. One advantage of this approach is that we are able to train only from synthetic CAD renderings of cluttered scenes, where concept values can be extracted, but apply the results to real images. Our implementation achieves the state-of-the-art performance of 2D/3D keypoint localization and image classification on real image benchmarks including KITTI, PASCAL VOC, PASCAL3D+, IKEA, and CIFAR100. We provide additional evidence that our approach outperforms alternative forms of supervision, such as multi-task networks.

3.
IEEE Trans Pattern Anal Mach Intell ; 35(11): 2608-23, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24051723

ABSTRACT

Geometric 3D reasoning at the level of objects has received renewed attention recently in the context of visual scene understanding. The level of geometric detail, however, is typically limited to qualitative representations or coarse boxes. This is linked to the fact that today's object class detectors are tuned toward robust 2D matching rather than accurate 3D geometry, encouraged by bounding-box-based benchmarks such as Pascal VOC. In this paper, we revisit ideas from the early days of computer vision, namely, detailed, 3D geometric object class representations for recognition. These representations can recover geometrically far more accurate object hypotheses than just bounding boxes, including continuous estimates of object pose and 3D wireframes with relative 3D positions of object parts. In combination with robust techniques for shape description and inference, we outperform state-of-the-art results in monocular 3D pose estimation. In a series of experiments, we analyze our approach in detail and demonstrate novel applications enabled by such an object class representation, such as fine-grained categorization of cars and bicycles, according to their 3D geometry, and ultrawide baseline matching.


Subject(s)
Algorithms , Artificial Intelligence , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Models, Theoretical , Pattern Recognition, Automated/methods , Photography/methods , Computer Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...