Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 123(2): 027201, 2019 Jul 12.
Article in English | MEDLINE | ID: mdl-31386489

ABSTRACT

The quantum dimer magnet (QDM) is the canonical example of quantum magnetism. The QDM state consists of entangled nearest-neighbor spin dimers and often exhibits a field-induced triplon Bose-Einstein condensate (BEC) phase. We report on a new QDM in the strongly spin-orbit coupled, distorted honeycomb-lattice material Yb_{2}Si_{2}O_{7}. Our single crystal neutron scattering, specific heat, and ultrasound velocity measurements reveal a gapped singlet ground state at zero field with sharp, dispersive excitations. We find a field-induced magnetically ordered phase reminiscent of a BEC phase, with exceptionally low critical fields of H_{c1}∼0.4 and H_{c2}∼1.4 T. Using inelastic neutron scattering in an applied magnetic field we observe a Goldstone mode (gapless to within δE=0.037 meV) that persists throughout the entire field-induced magnetically ordered phase, suggestive of the spontaneous breaking of U(1) symmetry expected for a triplon BEC. However, in contrast to other well-known cases of this phase, the high-field (µ_{0}H≥1.2 T) part of the phase diagram in Yb_{2}Si_{2}O_{7} is interrupted by an unusual regime signaled by a change in the field dependence of the ultrasound velocity and magnetization, as well as the disappearance of a sharp anomaly in the specific heat. These measurements raise the question of how anisotropy in strongly spin-orbit coupled materials modifies the field induced phases of QDMs.

2.
Phys Rev Lett ; 120(22): 227201, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29906141

ABSTRACT

We present measurements on a series of materials, Li_{2}In_{1-x}Sc_{x}Mo_{3}O_{8}, that can be described as a 1/6th-filled breathing kagome lattice. Substituting Sc for In generates chemical pressure which alters the breathing parameter nonmonotonically. Muon spin rotation experiments show that this chemical pressure tunes the system from antiferromagnetic long range order to a quantum spin liquid phase. A strong correlation with the breathing parameter implies that it is the dominant parameter controlling the level of magnetic frustration, with increased kagome symmetry generating the quantum spin liquid phase. Magnetic susceptibility measurements suggest that this is related to distinct types of charge order induced by changes in lattice symmetry, in line with the theory of Chen et al. [Phys. Rev. B 93, 245134 (2016)PRBMDO2469-995010.1103/PhysRevB.93.245134]. The specific heat for samples at intermediate Sc concentration, which have the minimum breathing parameter, show consistency with the predicted U(1) quantum spin liquid.

SELECTION OF CITATIONS
SEARCH DETAIL
...