Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Neotrop Entomol ; 50(6): 940-947, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34735699

ABSTRACT

The green peach aphid, Myzus persicae(Sulzer) (Hemiptera: Aphididae), is an important pest of several worldwide crops. This study evaluated the effects of plant micronutrients (alpha-iron (Fe), zinc sulfate (Zn), copper sulfate (Cu), and manganese sulfate (Mn)) on digestive enzymes, intermediary metabolism, and antioxidant responses of M. persicae reared on bell pepper plants under greenhouse conditions. Results showed that M. persicae reared on Mn-treated plants had the digestive enzymes α-amylase, trypsin, chymotrypsin, and elastase inhibited. Moreover, the aphids fed on Mn-treated plants showed the highest activities of catalase, glucose-6-phosphate dehydrogenase, superoxide dismutase, and peroxidase, and lower increase rate of malondialdehyde. These findings indicate that micronutrients can impact the aphid metabolism, which may aid control strategies against this insect pest. We raise the potential for beneficial use of foliar fertilizer application as a pest management tool that could be further evaluated on a production and economical scale, as well as with other insect pests.


Subject(s)
Aphids , Capsicum , Animals , Fertilizers , Micronutrients , Oxidative Stress
2.
Bull Entomol Res ; 108(4): 501-509, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29110744

ABSTRACT

A comprehensive study on digestive trypsin was undertaken in the larval midgut of Pieris brassicae L. Results of enzymatic compartmentalization showed a significantly higher activity of crude trypsin in the anterior larval midgut rather than posterior-midgut. Using Diethylaminoethyl cellulose fast flow column chromatography a purified trypsin was obtained by specific activity of 21 U mg-1 protein, recovery of 22%, purification fold of 28-fold and molecular weight of 25 kDa. This purified enzyme showed the highest activity at pH 8 and the corresponding temperature of 40°C. However, the specific inhibitors used including 4-(2-Aminoethyl) benzenesulfonyl fluroride hydrochloride, N-p-Tosyl-L-lysine methyl ester hydrochloride and Soybean Trypsin Inhibitor significantly lowered the activity of the purified enzyme in vitro. Moreover, the activity of trypsin and likewise the nutritional indices were significantly altered in the larval midgut feeding upon the leaves treated by 1 mM concentration of each inhibitor in comparison with control. Determination of enzymatic characteristics of insect trypsins is crucial in paving the path for controlling pests by potential natural compounds via transgenic plants.


Subject(s)
Butterflies/metabolism , Gastrointestinal Tract/enzymology , Trypsin/metabolism , Animals , Butterflies/enzymology , Butterflies/physiology , Electrophoresis, Polyacrylamide Gel , Gastrointestinal Tract/metabolism , Larva/enzymology , Larva/metabolism , Larva/physiology , Trypsin Inhibitors/pharmacology , alpha-Amylases/metabolism
3.
Bull Entomol Res ; 106(5): 633-41, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27215662

ABSTRACT

For parasitoids, the host represents the sole source of nutrients for the developing immature. Subsequently, host quality is an important factor affecting immature development and the resulting fitness of the emerging parasitoid, with impacts on fecundity, longevity and offspring sex ratio. Host age is an integral component of host quality and a key factor in host selection by the female parasitoid. The current study aimed to investigate the effect of decreasing host quality (determined by increasing host age) on adult life history traits (size, wing loading, longevity, and fecundity) and nutritional reserves (protein, lipid and glycogen concentrations) of the parasitoid Trichogramma brassicae. Higher quality hosts resulted in the production of larger offspring with increased resource reserves and enhanced mobility. One-day-old eggs contained significantly more protein and triglyceride than 25- and 45-day-old eggs. Quality of host and fitness of reared wasps decreased due to host aging. Parasitoids reared on 1-day-old hosts were larger, with greater fecundity and longevity, a reduced wind loading index, and produced a higher proportion of female offspring when compared with those reared on 25- and 45-day-old hosts. In addition, wasps reared on 1-day-old hosts contained higher energy resources, as determined by triglyceride, glycogen and protein reserves, which are essential to successful offspring production. One-day-old hosts can therefore be considered as the best age for producing wasps with greater fitness, since they contain the highest amount of protein, glycogen, and triglyceride. This has implications for the mass rearing of T. brassicae and enhancing the efficacy of this biological control agent.


Subject(s)
Host-Parasite Interactions , Wasps/physiology , Animals , Body Size , Energy Metabolism , Female , Fertility , Longevity , Male , Nutritive Value , Ovum/metabolism , Ovum/parasitology , Sex Ratio , Time Factors , Wasps/growth & development , Wings, Animal/physiology
4.
J Insect Physiol ; 76: 17-23, 2015 May.
Article in English | MEDLINE | ID: mdl-25783954

ABSTRACT

Caspases are frequently considered synonymous with apoptotic cell death. Increasing evidence demonstrates that these proteases may exert their activities in non-apoptotic functions. The non-apoptotic roles of caspases may include developmentally regulated autophagy during insect metamorphosis, as well as neuroblast self-renewal and the immune response. Here, we summarize the established knowledge and the recent advances in the multiple roles of insect caspases to highlight their relevance for physiological processes and survival.


Subject(s)
Caspases/metabolism , Insecta/physiology , Animals , Apoptosis/physiology , Autophagy/physiology , Insecta/growth & development , Metamorphosis, Biological/physiology
5.
Bull Entomol Res ; 104(2): 155-63, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24447729

ABSTRACT

The current study reports mortality and effects on cellular immune response of several entomopathogenic fungi including isoleates BB1, BB2 and BB3 of Beauveria bassiana, Metarhizium anisopliae, Isaria fumosoroseus and Lecanicilium lecanii against larvae of Chilo suppressalis. Prohemocytes, granulocytes, plasmatocytes and oenocytoids were identified as the main circulating hemocytes in the hemolymph of larvae using Giemsa staining solution. Entomopathogenic fungi caused differential mortality on larvae: BB1, BB3, M. anisopliae lead to the highest mortality on larvae and L. lecanii caused the lowest mortality. The highest numbers of total hemocytes were observed 3 h post-injection of B. bassiana isolates and 6 h for the other treatments. The highest numbers of plasmatocytes were observed 3 h post-injection of BB1 and Tween 80, whereas BB2, BB3, M. anisopliae, I. fumosoroseus and L. lecani caused plasmatocyte increase 6 h post-injection. Similar results were obtained in case of granulocytes but only Tween 80 showed the highest number of hemocytes 3 h post-injection. The highest numbers of nodules were found at various time intervals after injection of fungal isolates and latex bead. The highest activities of phenoloxidase were observed 12 h post-injection by BbB1, BbB3, M. anisopliae and latex bead; 3-6 h post-injection by BbB2, 6 h post-injection by I. fumosoroseus and 3-6 h post-injection by L. lecanii. Our data demonstrate the possibility of utilizing different fungal extracts in the field to help reduce the risk of resistance evolution in C. suppressalis and encourage experimentations aimed to increase the number of biological control agent for insect pests such as the striped rice stem borer C. suppressalis.


Subject(s)
Beauveria/physiology , Host-Pathogen Interactions/immunology , Metarhizium/physiology , Moths/immunology , Pest Control, Biological , Animals , Hemocytes/cytology , Larva/immunology , Larva/microbiology , Moths/microbiology , Spores, Fungal/physiology
6.
Bull Entomol Res ; 100(2): 185-96, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19519976

ABSTRACT

Plant extracts are currently studied more and more because of the possibility of their usage in plant protection. Many of the natural plant compounds which are used in the control of pests are known to affect the digestion and immune functions of insects. In this study, effects of Artemisia annua extract on the digestive enzymatic profiles and the cellular immune reactions of Eurygaster integriceps were investigated to reach a better understanding of its role in the control of this pest as the most destructive one in the production of wheat in the Near and Middle East, eastern and southern Europe and North Africa. Feeding and injection methods were used to study the plant extract effects on digestive enzymes and cellular immunity, respectively. When adult E. integriceps fed on food and water containing plant extracts, activity of the digestive enzymes, including alpha-amylase, alpha- and beta-glucosidases, protease and lipase, in addition to cellular immune reactions (total and differentiate hemocyte numbers, phagocytosis, nodule formation and phenoloxidase activity) against Beauveria bassiana were affected and significantly decreased in comparison with controls, in that the clear dose-response relationships were established with respect to enzyme activities and immune reactions. A. annua extract had a significant effect on kinetic parameters (Vmax and Km) of digestive enzymes and phenoloxidase activity so that the presence of the plant extract decreased the value of Vmax and increased Km, causing the reduction of enzyme affinity to the substrate, overall velocity of the reaction and finally interfering with the rate of breakdown of the enzyme-substrate complex. The understanding of fungal-induced immune responses and identification of factors regarding fungal virulence could be important in accelerating host death in a biological control scenario. Hence, the combination of botanical pesticides and microbes to control insect pest populations would be a safe and possibly rapid method to decrease their damage and environmental risk due to the use of chemical pesticides.


Subject(s)
Artemisia annua/chemistry , Beauveria/physiology , Heteroptera , Plant Extracts/pharmacology , Animals , Enzyme Activation/drug effects , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/enzymology , Hemolymph/microbiology , Heteroptera/drug effects , Heteroptera/enzymology , Heteroptera/immunology , Heteroptera/microbiology , Immunity, Cellular/drug effects , Monophenol Monooxygenase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...