Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Anal Toxicol ; 34(1): 32-8, 2010.
Article in English | MEDLINE | ID: mdl-20109300

ABSTRACT

This study of 20,089 urine specimens from chronic pain patients provided a unique opportunity to evaluate the prevalence of prescription opiates and metabolites, assess the usefulness of inclusion of normetabolites in the test panel, and compare opiate and oxycodone screening results to liquid chromatography with tandem mass spectrometry (LC-MS-MS) results. All specimens were screened by an opiate [enzyme-linked immunosorbent assay (ELISA), 100 ng/mL] and oxycodone assay [ELISA, 100 ng/mL or enzyme immunoassay (EIA), 50 ng/mL] and simultaneously tested by LC-MS-MS [limit of quantitation (LOQ) = 50 ng/mL] for 10 opiate analytes (codeine, norcodeine, morphine, hydrocodone, dihydrocodeine, norhydrocodone, hydromorphone, oxycodone, noroxycodone, and oxymorphone). Approximately two-thirds of the specimens were positive for one or more opiate analytes. The number of analytes detected in each specimen varied from 1 to 8 with 3 (34.8%) being most prevalent. Hydrocodone and oxycodone (in combination with metabolites) were most prevalent followed by morphine. Norcodeine was only infrequently detected whereas the prevalence of norhydrocodone and noroxycodone was approximately equal to the prevalence of the parent drug. A substantial number of specimens were identified that contained norhydrocodone (n = 943) or noroxycodone (n = 702) but not the parent drug, thereby establishing their interpretative value as biomarkers of parent drug use. Comparison of the two oxycodone screening assays revealed that the oxycodone ELISA had broader cross-reactivity with opiate analytes, and the oxycodone EIA was more specific for oxycodone. Specimens containing only norhydrocodone were best detected with the opiate ELISA whereas noroxycodone (only) specimens were best detected by the oxycodone EIA.


Subject(s)
Analgesics, Opioid/urine , Drug Prescriptions , Morphine Derivatives/urine , Oxycodone/urine , Pain/urine , Substance-Related Disorders/urine , Analgesics, Opioid/therapeutic use , Chromatography, High Pressure Liquid , Chronic Disease , Enzyme-Linked Immunosorbent Assay , Humans , Pain/drug therapy , Pain Clinics , Spectrometry, Mass, Electrospray Ionization , Substance Abuse Detection , Tandem Mass Spectrometry
2.
Forensic Sci Int ; 198(1-3): 58-61, 2010 May 20.
Article in English | MEDLINE | ID: mdl-20036472

ABSTRACT

Urine drug testing of pain patients provides objective information to health specialists regarding patient compliance, diversion, and concurrent illicit drug use. Interpretation of urine test results for semi-synthetic opiates can be difficult because of complex biotransformations of parent drug to metabolites that are also available commercially and may be abused. Normetabolites such as norcodeine, norhydrocodone and noroxycodone are unique metabolites that are not available commercially. Consequently, detection of normetabolite in specimens not containing parent drug, provides conclusive evidence that the parent drug was consumed. The goal of this study was to evaluate the prevalence and patterns of the three normetabolites, norcodeine, norhydrocodone and noroxycodone, in urine specimens of pain patients treated with opiates. Urine specimens were hydrolyzed with beta-glucuronidase and analyzed by a validated liquid chromatography tandem mass spectrometry (LC/MS/MS) assay for the presence of codeine, norcodeine, morphine, hydrocodone, norhydrocodone, hydromorphone, dihydrocodeine, oxycodone, noroxycodone, and oxymorphone. The limit of quantitation (LOQ) for these analytes was 50ng/mL. The study was approved by an Institutional Review Board. Of the total specimens (N=2654) tested, 71.4% (N=1895) were positive (>or=LOQ) for one or more of the analytes. The prevalence (%) of positive results for codeine, hydrocodone and oxycodone was 1.2%, 26.1%, and 36.2%, respectively, and the prevalence of norcodeine, norhydrocodone and noroxycodone was 0.5%, 22.1%, and 31.3%, respectively. For specimens containing normetabolite, the prevalence of norcodeine, norhydrocodone and noroxycodone in the absence of parent drug was 8.6%, 7.8% and 9.4%, respectively. From one-third to two-thirds of these specimens also did not contain other metabolites that could have originated from the parent drug. Consequently, the authors conclude that inclusion of norcodeine, norhydrocodone and noroxycodone is useful in interpretation of opiate drug source and reduces potential false negatives that would occur without tests for these unique metabolites.


Subject(s)
Analgesics, Opioid/urine , Codeine/analogs & derivatives , Hydrocodone/urine , Morphinans/urine , Chromatography, Liquid , Codeine/urine , False Negative Reactions , Forensic Toxicology , Humans , Medication Adherence , Oxycodone/urine , Oxymorphone/urine , Pain/drug therapy , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...