Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 25(20)2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33076274

ABSTRACT

In this work we describe the relationship between surface modification of hexagonally ordered mesoporous silica SBA-15 and loading/release characteristics of nonsteroidal anti-inflammatory drug (NSAID) naproxen. Mesoporous silica (MPS) was modified with 3-aminopropyl, phenyl and cyclohexyl groups by grafting method. Naproxen was adsorbed into pores of the prepared MPS from ethanol solution using a solvent evaporation method. The release of the drug was performed in buffer medium at pH 2 and physiological solution at pH 7.4. Parent MPSs as well as naproxen loaded MPSs were characterized using physicochemical techniques such as nitrogen adsorption/desorption, thermogravimetric analysis (TG), Zeta potential analysis, Fourier transform infrared spectroscopy (FT-IR), and elemental analysis. The amount of naproxen released from the MPSs into the medium was determined by high-performance liquid chromatography (HPLC). It was shown that the adsorption and desorption characteristics of naproxen are dependent on the pH of the solution and the surface functionalization of the host.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Inflammation/drug therapy , Naproxen/chemistry , Silicon Dioxide/chemistry , Adsorption/drug effects , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Drug Delivery Systems , Humans , Naproxen/pharmacology , Porosity , Silicon Dioxide/pharmacology , Solvents/chemistry , Surface Properties/drug effects
2.
RSC Adv ; 10(27): 15825-15835, 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-35493685

ABSTRACT

In this work, we have prepared and investigated a redox-responsive drug delivery system (DDS) based on a porous carrier. Doxorubicin (DOX), a chemotherapy medication for treatment of different kinds of cancer, was used as a model drug in the study. DOX was loaded in ordered hexagonal mesoporous silica SBA-15, a nanoporous material with good biocompatibility, stability, large pore size and specific surface area (S BET = 908 m2 g-1, V P = 0.79 cm3 g-1, d = 5.9 nm) and easy surface modification. To prepare the redox-responsive system, cystamine derivative ligands, with redox active disulphide linkers were grafted onto the surface of SBA-15. To ensure no significant premature release of DOX from the porous system, thioglycolic acid modified ZnS nanoparticles (ZnS-COOH NPs) were used as pore capping agents. The grafted redox-responsive cystamine derivative ligand containing disulphide linkers was bonded by a peptide bond to the thioglycolic acid groups of ZnS-COOH NPs, capping the pores. Once the disulphide bond was cleaved, the ZnS-COOH NPs caps were released and pores were opened to deliver the DOX cargo. The dithiol bond was cleavable by redox active molecules such as dithiothreitol (DTT) or glutathione, the concentration of which in cancer cells is 4 times higher than in healthy cells. The redox release of DOX was studied in two different media, physiological saline solution with DTT and saline without DTT. The prepared DDS proved the concept of redox responsive release. All samples were characterised by powder X-ray diffraction (XRD), transition electron microscopy (TEM), nitrogen adsorption/desorption at 77 K, Fourier-transform infrared spectroscopy (FTIR), thermal analysis and zeta potential measurements. The presence of semiconducting ZnS nanoparticle caps on the pore openings was detected by magnetic measurements using SQUID magnetometry showing that such cargo systems could be monitored using magnetic measurements which opens up the possibilities of using such drug delivery systems as theranostic agents.

3.
Molecules ; 24(7)2019 Apr 03.
Article in English | MEDLINE | ID: mdl-30987237

ABSTRACT

In cancer treatment, the safe delivery of the drug to the target tissue is an important task. 5-fluorouracil (5-FU), the well-known anticancer drug, was encapsulated into the pores of unmodified mesoporous silica SBA-15, as well as silica modified with 3-aminopropyl and cyclohexyl groups. The drug release studies were performed in two different media, in a simulated gastric fluid (pH = 2) and in a simulated body fluid (pH = 7) by RP-UHPLC. The simple and rapid RP-UHPLC method for quantitative determination of 5-fluorouracil released from unmodified and modified mesoporous silica SBA-15 was established on ODS Hypersil C18 column (150 × 4.6 mm, 5 µm) eluted with mobile phase consisted of methanol: phosphate buffer in volume ratio of 3:97 (v/v). Separation was achieved by isocratic elution. The flow rate was kept at 1 mL/min, the injection volume was set at 20 µL and the column oven temperature was maintained at 25 °C. The effluent was monitored at 268 nm. This paper provides information about the quantitative determination of the released 5-FU from silica. It was found out that larger amount of the drug was released in neutral pH in comparison with the acidic medium. In addition, surface functionalisation of silica SBA-15 influences the release properties of the drug.


Subject(s)
Chromatography, High Pressure Liquid , Drug Liberation , Fluorouracil/chemistry , Fluorouracil/pharmacokinetics , Silicon Dioxide , Chromatography, High Pressure Liquid/methods , Drug Compounding , Hydrogen-Ion Concentration , Molecular Structure , Porosity , Silicon Dioxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...