Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(22): 28874-28885, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38795034

ABSTRACT

The integration of transition metal dichalcogenides with photonic structures such as sol-gel SiOx:TiOy optical waveguides (WGs) makes possible the fabrication of photonic devices with the desired characteristics in the visible spectral range. In this study, we propose and experimentally demonstrate a MoS2-based photodetector integrated with a sol-gel SiOx:TiOy WG. Based on the spectroscopic measurements performed for our device, we concluded that the light entering the WG is almost completely channeled out from the WG and absorbed by the MoS2 flake, which is deposited on the WG. Therefore, this device works as a photodetector. The light coupling into the MoS2 region in this device construction is due to the high contrast of refractive index between the van der Waals crystal and the sol-gel WG, which is ∼4 and ∼1.8, respectively. The obtained MoS2-based photodetectors exhibit a photoresponsivity of 0.3 A W-1 (n-type MoS2) and 7.53 mA W-1 (p-type MoS2) at a bias voltage of 2 V. These results reveal great potential in the integration of sol-gel WGs with van der Waals crystals in optoelectronic applications.

2.
Materials (Basel) ; 16(5)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36903014

ABSTRACT

Zinc oxide layers on soda-lime glass substrates were fabricated using the sol-gel method and the dip-coating technique. Zinc acetate dihydrate was applied as the precursor, while diethanolamine as the stabilizing agent. This study aimed to determine what effect has the duration of the sol aging process on the properties of fabricated ZnO films. Investigations were carried out with the sol that was aged during the period from 2 to 64 days. The sol was studied using the dynamic light scattering method to determine its distribution of molecule size. The properties of ZnO layers were studied using the following methods: scanning electron microscopy, atomic force microscopy, transmission and reflection spectroscopy in the UV-Vis range, and the goniometric method for determination of the water contact angle. Furthermore, photocatalytic properties of ZnO layers were studied by the observation and quantification of the methylene blue dye degradation in an aqueous solution under UV illumination. Our studies showed that ZnO layers have grain structure, and their physical-chemical properties depend on the duration of aging. The strongest photocatalytic activity was observed for layers produced from the sol that was aged over 30 days. These layers have also the greatest porosity (37.1%) and the largest water contact angle (68.53°). Our studies have also shown that there are two absorption bands in studied ZnO layers, and values of optical energy band gaps determined from positions of maxima in reflectance characteristics are equal to those determined using the Tauc method. Optical energy band gaps of the ZnO layer fabricated from the sol aged over 30 days are EgI = 4.485 eV and EgII = 3.300 eV for the first and second bands, respectively. This layer also showed the highest photocatalytic activity, causing the pollution to degrade 79.5% after 120 min of UV irradiation. We believe that ZnO layers presented here, thanks to their attractive photocatalytic properties, may find application in environmental protection for the degradation of organic pollutants.

3.
Int J Mol Sci ; 25(1)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38203673

ABSTRACT

Delivery systems for biologically active substances such as proanthocyanidins (PCANs), produced in the form of electrospun nonwoven through the electrospinning method, were designed using a polymeric blend of poly(L-lactide-co-glycolide) (PLGA)and poly[(R,S)-3-hydroxybutyrate] ((R,S)-PHB). The studies involved the structural and thermal characteristics of the developed electrospun three-dimensional fibre matrices unloaded and loaded with PCANs. In the next step, the hydrolytic degradation tests of these systems were performed. The release profile of PCANs from the electrospun nonwoven was determined with the aid of UV-VIS spectroscopy. Approximately 30% of the PCANs were released from the tested electrospun nonwoven during the initial 15-20 days of incubation. The chemical structure of water-soluble oligomers that were formed after the hydrolytic degradation of the developed delivery system was identified through electrospray ionization mass spectrometry. Oligomers of lactic acid and OLAGA oligocopolyester, as well as oligo-3-hydroxybutyrate terminated with hydroxyl and carboxyl end groups, were recognized as degradation products released into the water during the incubation time. It was also demonstrated that variations in the degradation rate of individual mat components influenced the degradation pattern and the number of formed oligomers. The obtained results suggest that the incorporation of proanthocyanidins into the system slowed down the hydrolytic degradation process of the poly(L-lactide-co-glycolide)/poly[(R,S)-3-hydroxybutyrate] three-dimensional fibre matrix. In addition, in vitro cytotoxicity and antimicrobial studies advocate the use of PCANs for biomedical applications with promising antimicrobial activity.


Subject(s)
Anti-Infective Agents , Proanthocyanidins , Humans , Polyesters , Periodontal Pocket , 3-Hydroxybutyric Acid , Drug Delivery Systems , Anti-Infective Agents/pharmacology , Hydroxybutyrates , Poly A , Water
4.
Materials (Basel) ; 15(21)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36363233

ABSTRACT

Composite silica-titania waveguide films of refractive index ca. 1.8 are fabricated on glass substrates using a sol-gel method and dip-coating technique. Tetraethyl orthosilicate and tetraethyl orthotitanate with molar ratio 1:1 are precursors. Fabricated waveguides are annealed at 500 °C for 60 min. Their optical properties are studied using ellipsometry and UV-Vis spectrophotometry. Optical losses are determined using the streak method. The material structure and chemical composition, of the silica-titania films are analyzed using transmission electron microscopy (TEM) and electron dispersive spectroscopy (EDS), respectively. The surface morphology was investigated using atomic force microscopy (AFM) and scanning electron microscopy (SEM) methods. The results presented in this work show that the waveguide films are amorphous, and their parameters are stable for over a 13 years. The optical losses depend on their thickness and light polarization. Their lowest values are less than 0.06 dB cm-1. The paper presents the results of theoretical analysis of scattering losses on nanocrystals and pores in the bulk and interfaces of the waveguide film. These results combined with experimental data clearly indicate that light scattering at the interface to a glass substrate is the main source of optical losses. Presented waveguide films are suitable for application in evanescent wave sensors.

5.
Opt Express ; 30(13): 23678-23694, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-36225043

ABSTRACT

This paper investigates a highly attractive platform for an optical waveguide system based on silica-titania material. The paper is organized into two parts. In the first part, an experimental study on the development of an optical waveguide system is conducted via the sol-gel dip-coating method, and the optical characterization of the waveguide system is performed at a visible wavelength. This system is capable of operating from visible to near-IR wavelength ranges. The experimental results prove the dominance of this waveguide platform due to its low-cost, low loss, and easy to develop integrated optics systems. The numerical analysis of a one-dimensional Photonic crystal waveguide optical filter based on the silica-titania platform is considered in the second part of the paper by utilizing the 2D-finite element method (2D-FEM). A Fabry-Perot structure is also analyzed for refractive index sensing applications. We believe that the results presented in this work will be valuable in the realization of low-cost photonic integrated circuits based on the silica-titania platform.

6.
Polymers (Basel) ; 14(14)2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35890616

ABSTRACT

Presented herein are the results of a novel recycling method for waste Tetra Pak® packaging materials. The polyethylene (PE-T) component of this packaging material, obtained via a separation process using a "solvents method", was used as a carbon source for the biosynthesis of polyhydroxyalkanoates (PHAs) by the bacterial strain Cupriavidus necator H16. Bacteria were grown for 48-72 h, at 30 °C, in TSB (nitrogen-rich) or BSM (nitrogen-limited) media supplemented with PE-T. Growth was monitored by viable counting. It was demonstrated that C. necator utilised PE-T in both growth media, but was only able to accumulate 40% w/w PHA in TSB supplemented with PE-T. Only 1.5% w/w PHA was accumulated in the TSB control, and no PHA was detected in the BSM control. Extracted biopolymers were characterised by nuclear magnetic resonance (NMR), Fourier-transform infrared (FTIR) spectroscopy, electrospray tandem mass spectrometry (ESI-MS/MS), gel permeation chromatography (GPC), and accelerator mass spectrometry (AMS). The characterisation of PHA by ESI-MS/MS revealed that PHA produced by C. necator in TSB supplemented with PE-T contained 3-hydroxybutyrate, 3-hydroxyvalerate, and 3-hydroxyhexanoate co-monomeric units. AMS analysis also confirmed the presence of 96.73% modern carbon and 3.27% old carbon in PHA derived from Tetra Pak®. Thus, this study demonstrates the feasibility of our proposed recycling method for waste Tetra Pak® packaging materials, alongside its potential for producing value-added PHA, and the ability of 14C analysis in validating this bioconversion process.

7.
Materials (Basel) ; 15(13)2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35806715

ABSTRACT

In the past few decades, several methods concerning optical thin films have been established to facilitate the development of integrated optics. This paper provides a brief depiction of different techniques for implementing optical waveguide thin films that involve chemical, physical, and refractive index modification methods. Recent advances in these fabrication methods are also been presented. Most of the methods developed for the realization of the thin-films are quite efficient, but they are expensive and require sophisticated equipment. The major interest of the scientists is to develop simple and cost-effective methods for mass production of optical thin films resulting in the effective commercialization of the waveguide technology. Our research group is focused on developing a silica-titania optical waveguide platform via the sol-gel dip-coating method and implementing active and passive optical elements via the wet etching method. We are also exploring the possibility of using nanoimprint lithography (NIL) for patterning these films so that the fabrication process is efficient and economical. The recent developments of this platform are discussed. We believe that silica-titania waveguide technology developed via the sol-gel dip-coating method is highly attractive and economical, such that it can be commercialized for applications such as sensing and optical interconnects.

8.
Materials (Basel) ; 14(23)2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34885286

ABSTRACT

Crack-free binary SiOx:TiOy composite films with the refractive index of ~1.94 at wavelength 632.8 nm were fabricated on soda-lime glass substrates, using the sol-gel method and dip-coating technique. With the use of transmission spectrophotometry and Tauc method, the energy of the optical band gap of 3.6 eV and 4.0 eV were determined for indirect and direct optical allowed transitions, respectively. Using the reflectance spectrophotometry method, optical homogeneity of SiOx:TiOy composite films was confirmed. The complex refractive index determined by spectroscopic ellipsometry confirmed good transmission properties of the developed SiOx:TiOy films in the Vis-NIR spectral range. The surface morphology of the SiOx:TiOy films by atomic force microscopy (AFM) and scanning electron microscopy (SEM) methods demonstrated their high smoothness, with the root mean square roughness at the level of ~0.15 nm. Fourier-transform infrared (FTIR) spectroscopy and Raman spectroscopy were used to investigate the chemical properties of the SiOx:TiOy material. The developed binary composite films SiOx:TiOy demonstrate good waveguide properties, for which optical losses of 1.1 dB/cm and 2.7 dB/cm were determined, for fundamental TM0 and TE0 modes, respectively.

9.
Toxicol In Vitro ; 73: 105111, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33588021

ABSTRACT

The natural polysaccharides are promising compounds for applications in regenerative medicine. Gellan gum (GG) is the bacteria-derived polysaccharide widely used in food industry. Simple modifications of its chemical properties make GG superior for the development of biocompatible hydrogels. Beside reversible cationic integration of GG chains, more efficient binding is accomplished with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC). However, the side-products of polymer cross-linking might affect viability and differentiation of stem cells introduced into the hydrogels. We found that O-acylisourea (EDU) stimulates autophagy-based vacuolation in both periodontal ligament and dental pulp stem cells. 24-h treatment of cells with GG extracts cross-linked with 15 mM EDC developed large cytoplasmic vacuoles. Freshly prepared EDU (2-6 mM) but not 15 mM EDC solutions initiated vacuole development with concomitant reduction of cell viability/metabolism. Most of the vacuoles stained with acridine orange displayed highly acidic environment further confirmed by flow cytometric analysis. Western blot of the LC3 autophagy marker followed by a transmission electron microscopy indicated the process is autophagy-dependent. We propose that the high reactivity of EDU with intracellular components initiates autophagy, although the targets of EDU remain unknown. Nevertheless, a burst release of EDU from GG hydrogels might modulate negatively cellular processes and final effectiveness of tissue regeneration.


Subject(s)
Carbodiimides/pharmacology , Cross-Linking Reagents/pharmacology , Hydrogels/pharmacology , Polysaccharides, Bacterial/pharmacology , Stem Cells/drug effects , Urea/analogs & derivatives , Urea/pharmacology , Vacuoles/drug effects , Adult , Cell Survival/drug effects , Cells, Cultured , Dental Pulp/cytology , Female , Humans , Male , Middle Aged , Nanog Homeobox Protein/genetics , Octamer Transcription Factor-3/genetics , Periodontal Ligament/cytology , Proto-Oncogene Proteins c-kit/genetics , SOXB1 Transcription Factors/genetics , Stem Cells/metabolism , Stem Cells/ultrastructure , Young Adult
10.
Materials (Basel) ; 13(18)2020 Sep 18.
Article in English | MEDLINE | ID: mdl-32961952

ABSTRACT

This article reports the studies on bioactive (co)oligoesters towards their use as controlled delivery systems of p-anisic acid. The objects of the study were oligo[3-hydroxy-3-(4-methoxybenzoyloxymethyl)propionate], (p-AA-CH2-HP)n oligoester, and oligo[(3-hydroxy-3-(4-methoxybenzoyloxymethyl)propionate)-co-(3-hydroxybutyrate)] [(p-AA-CH2-HP)x-co-(HB)y (co)oligoesters containing p-anisic acid moiety (p-AA, as the bioactive end and side groups) connected to the polymer backbone through the susceptible to hydrolysis ester bonds. A thorough insight into the hydrolysis process of the bioactive (co)oligoesters studied has allowed us to determine the release profile of p-AA as well as to identify polymer carrier degradation products. The p-AA release profiles determined on the basis of high-performance liquid chromatography (HPLC) measurements showed that the release of the bioactive compound from the developed (co)oligoester systems was regular and no burst effect occurred. Biological studies demonstrated that studied (homo)- and (co)oligoesters were well tolerated by HaCaT cells because none of them showed notable cytotoxicity. They promoted keratinocyte growth at moderate concentrations. Bioactive (co)oligoesters containing p-anisic acid moiety had somewhat decreased cell proliferation at the highest concentration (100 µg/mL). The important practical inference of the current study is that the (co)oligoesters developed have a relatively large load of the biologically active substance (p-AA) per polymer macromolecule, which unlocks their potential application in the cosmetic industry.

11.
Polymers (Basel) ; 12(7)2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32679893

ABSTRACT

Periodontitis (PD) is a chronic inflammatory disease of periodontal tissues caused by pathogenic microorganisms and characterized by disruption of the tooth-supporting structures. Conventional drug administration pathways in periodontal disease treatment have many drawbacks such as poor biodistribution, low selectivity of the therapeutic effect, burst release of the drug, and damage to healthy cells. To overcome this limitation, controlled drug delivery systems have been developed as a potential method to address oral infectious disease ailments. The use of drug delivery devices proves to be an excellent auxiliary method in improving the quality and effectiveness in periodontitis treatment, which includes inaccessible periodontal pockets. This review explores the current state of knowledge regarding the applications of various polymer-based delivery systems such as hydrogels, liposomes, micro-, and nanoparticles in the treatment of chronic periodontal disease. Furthermore, to present a more comprehensive understanding of the difficulties concerning the treatment of PD, a brief description of the mechanism and development of the disease is outlined.

12.
Materials (Basel) ; 13(9)2020 May 11.
Article in English | MEDLINE | ID: mdl-32403315

ABSTRACT

The need for a cost reduction of the materials derived from (bio)degradable polymers forces research development into the formation of biocomposites with cheaper fillers. As additives can be made using the post-consumer wood, generated during wood products processing, re-use of recycled waste materials in the production of biocomposites can be an environmentally friendly way to minimalize and/or utilize the amount of the solid waste. Also, bioactive materials, which possess small amounts of antimicrobial additives belong to a very attractive packaging industry solution. This paper presents a study into the biodegradation, under laboratory composting conditions, of the composites that consist of poly[(R)-3-hydroxybutyrate-co-4-hydroxybutyrate)] and wood flour as a polymer matrix and natural filler, respectively. Thermogravimetric analysis, differential scanning calorimetry and scanning electron microscopy were used to evaluate the degradation progress of the obtained composites with different amounts of wood flour. The degradation products were characterized by multistage electrospray ionization mass spectrometry. Also, preliminary tests of the antimicrobial activity of selected materials with the addition of nisin were performed. The obtained results suggest that the different amount of filler has a significant influence on the degradation profile.

13.
Polymers (Basel) ; 11(10)2019 Sep 27.
Article in English | MEDLINE | ID: mdl-31569718

ABSTRACT

This study investigated the molecular structure of the polyhydroxyalkanoate (PHA) produced via a microbiological shake flask experiment utilizing oxidized polypropylene (PP) waste as an additional carbon source. The bacterial strain Cupriavidus necator H16 was selected as it is non-pathogenic, genetically stable, robust, and one of the best known producers of PHA. Making use of PHA oligomers, formed by controlled moderate-temperature degradation induced by carboxylate moieties, by examination of both the parent and fragmentation ions, the ESI-MS/MS analysis revealed the 3-hydroxybutyrate and randomly distributed 3-hydroxyvalerate as well as 3-hydroxyhexanoate repeat units. Thus, the bioconversion of PP solid waste to a value-added product such as PHA tert-polymer was demonstrated.

14.
Polymers (Basel) ; 11(7)2019 Jul 22.
Article in English | MEDLINE | ID: mdl-31336650

ABSTRACT

It was shown that selected sodium phenoxide derivatives with different basicity and nucleophilicity, such as sodium p-nitrophenoxide, p-chlorophenoxide, 1-napthoxide, phenoxide and p-methoxyphenoxide, are effective initiators in anionic ring-opening polymerization (AROP) of ß-butyrolactone in mild conditions. It was found that phenoxides as initiators in anionic ring-opening polymerization of ß-butyrolactone behave as strong nucleophiles, or weak nucleophiles, as well as Brønsted bases. The resulting polyesters possessing hydroxy, phenoxy and crotonate initial groups are formed respectively by the attack of phenoxide anion at (i) C2 followed by an elimination reaction with hydroxide formation, (ii) C4 and (iii) abstraction of acidic proton at C3. The obtained poly(3-hydroxybutyrate) possesses carboxylate growing species. The ratio of the observed initial groups strongly depends on the basicity and nucleophilicity of the sodium phenoxide derivative used as initiator. The proposed mechanism of this polymerization describes the reactions leading to formation of observed end groups. Moreover, the possibility of formation of a crotonate group during the propagation step of this polymerization is also discussed.

15.
Molecules ; 25(1)2019 Dec 29.
Article in English | MEDLINE | ID: mdl-31905750

ABSTRACT

In the investigation presented here the synthesis of new lariat ether derivative obtained from the modification of tetrapyrrolidinyl-PNP-crown ether macrocycle is described. The polyheterotopic molecular coreceptor consisted of the replacement of chlorine atoms with an optically active (S)-(1-benzylpyrrolidin-2-yl) methanamine. The structure was confirmed by using elemental analysis, mass spectrometry, and NMR spectroscopy. This work covers results concerning the complexing properties of the new ligand towards Ag+, Cu2+, Co2+, Ni2+, and Zn2+ ions. The formation of non-covalent complexes of 1:1 stoichiometry with the Cu2+, Co2+, Ni2+, and Zn2+ ions have been confirmed by mass spectrometry. Due to the previous work and application possibilities, a large emphasis was put on the investigation of the complexation ability of lariat ether with silver (I) cation to determine stability constants by direct potentiometric method. In this case, the formation of four different forms of complexes AgL, Ag2L, Ag3L, and Ag4L has been proved. The observed unusual binding through the nitrogen atoms from the exocyclic substituents may provide the structural unit to build a new coordination polymers.


Subject(s)
Amines/chemistry , Crown Ethers/chemistry , Mass Spectrometry , Ions/chemistry , Ligands , Magnetic Resonance Spectroscopy , Metals/chemistry , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry
16.
Molecules ; 23(8)2018 Aug 14.
Article in English | MEDLINE | ID: mdl-30110952

ABSTRACT

In this study, low molecular weight poly(δ-valerolactone) (PVL) was synthesized through bulk-ring openings polymerization of δ-valerolactone with boric acid (B(OH)3) as a catalyst and benzyl alcohol (BnOH) as an initiator. The resulting homopolymer was characterized with the aid of nuclear magnetic resonance (NMR) and mass spectrometry (MS) techniques to gain further understanding of its molecular structure. The electrospray ionization mass spectrometry (ESI-MS) spectra of poly(δ-valerolactone) showed the presence of two types of homopolyester chains-one terminated by benzyl ester and hydroxyl end groups and one with carboxyl and hydroxyl end groups. Additionally, a small amount of cyclic PVL oligomers was identified. To confirm the structure of PVL oligomers obtained, fragmentation of sodium adducts of individual polyester molecules terminated by various end groups was explored in ESI-MSn by using collision induced dissociation (CID) techniques. The ESI-MSn analyses were conducted both in positive- and negative ion mode. The comparison of the fragmentation spectra obtained with proposed respective theoretical fragmentation pathways allowed the structure of the obtained oligomers to be established at the molecular level. Additionally, using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS), it was proven that regardless of the degree of oligomerization, the resulting PVL samples were a mixture of two types of linear PVL oligomers differing in end groups and containing just a small amount of cyclic oligomers that tended to be not visible at higher molar masses.


Subject(s)
Boric Acids/chemistry , Molecular Structure , Polymers/chemistry , Pyrones/chemistry , Catalysis , Magnetic Resonance Spectroscopy , Molecular Weight , Polyesters/chemistry , Polymerization , Polymers/chemical synthesis , Pyrones/chemical synthesis , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tandem Mass Spectrometry
17.
Polymers (Basel) ; 10(9)2018 Aug 29.
Article in English | MEDLINE | ID: mdl-30960882

ABSTRACT

Excessive levels of plastic waste in our oceans and landfills indicate that there is an abundance of potential carbon sources with huge economic value being neglected. These waste plastics, through biological fermentation, could offer alternatives to traditional petrol-based plastics. Polyhydroxyalkanoates (PHAs) are a group of plastics produced by some strains of bacteria that could be part of a new generation of polyester materials that are biodegradable, biocompatible, and, most importantly, non-toxic if discarded. This study introduces the use of prodegraded high impact and general polystyrene (PS0). Polystyrene is commonly used in disposable cutlery, CD cases, trays, and packaging. Despite these applications, some forms of polystyrene PS remain financially and environmentally expensive to send to landfills. The prodegraded PS0 waste plastics used were broken down at varied high temperatures while exposed to ozone. These variables produced PS flakes (PS1⁻3) and a powder (PS4) with individual acid numbers. Consequently, after fermentation, different PHAs and amounts of biomass were produced. The bacterial strain, Cupriavidus necator H16, was selected for this study due to its well-documented genetic profile, stability, robustness, and ability to produce PHAs at relatively low temperatures. The accumulation of PHAs varied from 39% for prodegraded PS0 in nitrogen rich media to 48% (w/w) of dry biomass with the treated PS. The polymers extracted from biomass were analyzed using nuclear magnetic resonance (NMR) and electrospray ionization tandem mass spectrometry (ESI-MS/MS) to assess their molecular structure and properties. In conclusion, the PS0⁻3 specimens were shown to be the most promising carbon sources for PHA biosynthesis; with 3-hydroxybutyrate and up to 12 mol % of 3-hydroxyvalerate and 3-hydroxyhexanoate co-monomeric units generated.

18.
Bioengineering (Basel) ; 4(3)2017 Aug 28.
Article in English | MEDLINE | ID: mdl-28952552

ABSTRACT

There is an increasing demand for bio-based polymers that are developed from recycled materials. The production of biodegradable polymers can include bio-technological (utilizing microorganisms or enzymes) or chemical synthesis procedures. This report demonstrates the corroboration of the molecular structure of polyhydroxyalkanoates (PHAs) obtained by the conversion of waste polyethylene (PE) via non-oxygenated PE wax (N-PEW) as an additional carbon source for a bacterial species. The N-PEW, obtained from a PE pyrolysis reaction, has been found to be a beneficial carbon source for PHA production with Cupriavidus necator H16. The production of the N-PEW is an alternative to oxidized polyethylene wax (O-PEW) (that has been used as a carbon source previously) as it is less time consuming to manufacture and offers fewer industrial applications. A range of molecular structural analytical techniques were performed on the PHAs obtained; which included nuclear magnetic resonance (NMR) and electrospray ionisation tandem mass spectrometry (ESI-MS/MS). Our study showed that the PHA formed from N-PEW contained 3-hydroxybutyrate (HB) with 11 mol% of 3-hydroxyvalerate (HV) units.

19.
Acta Crystallogr Sect E Struct Rep Online ; 68(Pt 9): o2803-4, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22969676

ABSTRACT

The title compound {systematic name: 1-(2-bromo-benz-yl)-5-ethenyl-2-[hy-droxy(quinolin-4-yl)meth-yl]-1-aza-bicyclo-[2.2.2]octan-1-ium bromide}, C(26)H(28)BrN(2)O(+)·Br(-), is a chiral quater-nary ammonium salt of one of the Cinchona alkaloids. The planes of the quinoline and of the bromo-benzyl substituent are inclined to one another by 9.11 (9)°. A weak intra-molecular C-H⋯O hydrogen bond occurs. The crystal structure features strong O-H⋯Br hydrogen bonds and weak C-H⋯Br inter-actions.

20.
Acta Pol Pharm ; 65(6): 647-54, 2008.
Article in English | MEDLINE | ID: mdl-19172846

ABSTRACT

Basic concept of phase transfer catalysis, its specific features and applications in pharmaceutical industry are described.


Subject(s)
Drug Design , Drug Industry/methods , Organic Chemicals/chemical synthesis , Anions/chemistry , Catalysis , Humans , Molecular Structure , Organic Chemicals/chemistry , Phase Transition
SELECTION OF CITATIONS
SEARCH DETAIL
...