Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Phys J E Soft Matter ; 41(6): 71, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29876655

ABSTRACT

From equilibrium molecular dynamics (MD) simulations of a bead-spring model for short-chain glass-forming polymer melts we calculate several quantities characterizing the single-monomer dynamics near the (extrapolated) critical temperature [Formula: see text] of mode-coupling theory: the mean-square displacement g0(t), the non-Gaussian parameter [Formula: see text] and the self-part of the van Hove function [Formula: see text] which measures the distribution of monomer displacements r in time t. We also determine these quantities from a continuous-time random walk (CTRW) approach. The CTRW is defined in terms of various probability distributions which we know from previous analysis. Utilizing these distributions the CTRW can be solved numerically and compared to the MD data with no adjustable parameter. The MD results reveal the heterogeneous and non-Gaussian single-particle dynamics of the supercooled melt near [Formula: see text]. In the time window of the early [Formula: see text] relaxation [Formula: see text] is large and [Formula: see text] is broad, reflecting the coexistence of monomer displacements that are much smaller ("slow particles") and much larger ("fast particles") than the average at time t, i.e. than [Formula: see text]. For large r the tail of [Formula: see text] is compatible with an exponential decay, as found for many glassy systems. The CTRW can reproduce the spatiotemporal dependence of [Formula: see text] at a qualitative to semiquantitative level. However, it is not quantitatively accurate in the studied temperature regime, although the agreement with the MD data improves upon cooling. In the early [Formula: see text] regime we also analyze the MD results for [Formula: see text] via the space-time factorization theorem predicted by ideal mode-coupling theory. While we find the factorization to be well satisfied for small r, both above and below [Formula: see text] , deviations occur for larger r comprising the tail of [Formula: see text]. The CTRW analysis suggests that single-particle "hops" are a contributing factor for these deviations.

2.
Article in English | MEDLINE | ID: mdl-24827270

ABSTRACT

Single-particle trajectories in supercooled liquids display long periods of localization interrupted by "fast moves." This observation suggests a modeling by a continuous-time random walk (CTRW). We perform molecular dynamics simulations of equilibrated short-chain polymer melts near the critical temperature of mode-coupling theory Tc and extract "moves" from the monomer trajectories. We show that not all moves comply with the conditions of a CTRW. Strong forward-backward correlations are found in the supercooled state. A refinement procedure is suggested to exclude these moves from the analysis. We discuss the repercussions of the refinement on the jump-length and waiting-time distributions as well as on characteristic time scales, such as the average waiting time ("exchange time") and the average time for the first move ("persistence time"). The refinement modifies the temperature (T) dependence of these time scales. For instance, the average waiting time changes from an Arrhenius-type to a Vogel-Fulcher-type T dependence. We discuss this observation in the context of the bifurcation of the α process and (Johari) ß process found in many glass-forming materials to occur near Tc. Our analysis lays the foundation for a study of the jump-length and waiting-time distributions, their temperature and chain-length dependencies, and the modeling of the monomer dynamics by a CTRW approach in the companion paper [J. Helfferich et al., Phys. Rev. E 89, 042604 (2014)].

3.
Article in English | MEDLINE | ID: mdl-24827271

ABSTRACT

The continuous-time random walk (CTRW) describes the single-particle dynamics as a series of jumps separated by random waiting times. This description is applied to analyze trajectories from molecular dynamics (MD) simulations of a supercooled polymer melt. Based on the algorithm presented by Helfferich et al. [Phys. Rev. E 89, 042603 (2014)], we detect jump events of the monomers. As a function of temperature and chain length, we examine key distributions of the CTRW: the jump-length distribution (JLD), the waiting-time distribution (WTD), and the persistence-time distribution (PTD), i.e., the distribution of waiting times for the first jump. For the equilibrium (polymer) liquid under consideration, we verify that the PTD is determined by the WTD. For the mean-square displacement (MSD) of a monomer, the results for the CTRW model are compared with the underlying MD data. The MD data exhibit two regimes of subdiffusive behavior, one for the early α process and another at later times due to chain connectivity. By contrast, the analytical solution of the CTRW yields diffusive behavior for the MSD at all times. Empirically, we can account for the effect of chain connectivity in Monte Carlo simulations of the CTRW. The results of these simulations are then in good agreement with the MD data in the connectivity-dominated regime, but not in the early α regime where they systematically underestimate the MSD from the MD.

4.
Eur Phys J E Soft Matter ; 36(10): 124, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24158265

ABSTRACT

We study the stability of a viscoelastic thin polymer film under two destabilization factors: the application of an electric field normal to the surface--as in typical electro-hydrodynamic destabilization experiments--and the presence of a frozen-in internal residual stress, stemming from the preparation process of the film, typically spin-coating. At the film-substrate interface we consider a general boundary condition, containing perfect gliding on slippery substrates, as well as perfect sticking of the film to the substrate as limiting cases. We show that the interplay of the two sources of stress, the viscoelasticity and the boundary condition, leads to a rich behavior, especially as far as the fastest growing wave number (or wavelength) is concerned. The latter determines the initial growth of the instability, and often also the final pattern obtained in small capacitor gaps, and is the main experimental observable.

5.
Eur Phys J E Soft Matter ; 28(4): 401-9, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19326156

ABSTRACT

We study the alignment of polar biofilaments, such as microtubules and actin, subject to the action of multiple molecular motors attached simultaneously to more than one filament. Focusing on a paradigm model of only two filaments interacting with multiple motors, we were able to investigate in detail the alignment dynamics. While almost no alignment occurs in the case of a single motor, the filaments become rapidly aligned due to the collective action of the motors. Our analysis shows that the alignment time is governed by the number of bound motors and the magnitude of the motors' stepping fluctuations. We predict that the time scale of alignment is in the order of seconds, much faster than that reported for passive crosslink-induced bundling. In vitro experiments on the alignment of microtubules by multiple-motor covered beads are in qualitative agreement. We also discuss another mode of fast alignment of filaments, namely the cooperation between motors and passive crosslinks.


Subject(s)
Actins/chemistry , Actins/metabolism , Microtubules/chemistry , Microtubules/metabolism , Molecular Motor Proteins/metabolism , Biomechanical Phenomena , Kinesins/metabolism , Kinetics , Models, Molecular , Nanotechnology
6.
Eur Phys J E Soft Matter ; 27(3): 243-51, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18972145

ABSTRACT

The dynamical interaction between filaments and motor proteins is known for their propensity to self-organize into spatio-temporal patterns. Since the filaments are polar in the sense that motors define a direction of motion on them, the system can display a spatially homogeneous polar-filament orientation. We show that the latter anisotropic state itself may become unstable with respect to inhomogeneous fluctuations. This scenario shares similarities with instabilities in planarly aligned nematic liquid crystals: in both cases the wave vector of the instability may be oriented either parallel or oblique to the polarity axis. However, the encountered instabilities here are long-wave instead of short-wave and the destabilizing modes are drifting ones due to the polar symmetry. Additionally a nonpropagating transverse instability is possible. The stability diagrams related to the various wave vector orientations relative to the polarity axis are determined and discussed for a specific model of motor-filament interactions.


Subject(s)
Microfilament Proteins/chemistry , Models, Molecular , Molecular Motor Proteins/chemistry , Anisotropy , Liquid Crystals/chemistry
7.
Biophys J ; 93(12): 4445-52, 2007 Dec 15.
Article in English | MEDLINE | ID: mdl-17604319

ABSTRACT

All eukaryotic cells rely on the active self-organization of protein filaments to form a responsive intracellular cytoskeleton. The necessity of motility and reaction to stimuli additionally requires pathways that quickly and reversibly change cytoskeletal organization. While thermally driven order-disorder transitions are, from the viewpoint of physics, the most obvious method for controlling states of organization, the timescales necessary for effective cellular dynamics would require temperatures exceeding the physiologically viable temperature range. We report a mechanism whereby the molecular motor myosin II can cause near-instantaneous order-disorder transitions in reconstituted cytoskeletal actin solutions. When motor-induced filament sliding diminishes, the actin network structure rapidly and reversibly self-organizes into various assemblies. Addition of stable cross linkers was found to alter the architectures of ordered assemblies. These isothermal transitions between dynamic disorder and self-assembled ordered states illustrate that the interplay between passive crosslinking and molecular motor activity plays a substantial role in dynamic cellular organization.


Subject(s)
Actins/chemistry , Actins/ultrastructure , Models, Chemical , Molecular Motor Proteins/chemistry , Molecular Motor Proteins/ultrastructure , Myosin Type II/chemistry , Myosin Type II/ultrastructure , Binding Sites , Biopolymers/chemistry , Computer Simulation , Cross-Linking Reagents/chemistry , Crystallization/methods , Models, Molecular , Multiprotein Complexes/chemistry , Multiprotein Complexes/ultrastructure , Protein Binding , Protein Conformation
8.
Eur Phys J E Soft Matter ; 18(1): 41-54, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16211334

ABSTRACT

A model for polar filaments interacting via molecular motor complexes is investigated which exhibits bifurcations to spatial patterns. It is shown that the homogeneous distribution of filaments, such as actin or microtubules, may become either unstable with respect to an orientational instability of a finite wave number or with respect to modulations of the filament density, where long-wavelength modes are amplified as well. Above threshold nonlinear interactions select either stripe patterns or periodic asters. The existence and stability ranges of each pattern close to threshold are predicted in terms of a weakly nonlinear perturbation analysis, which is confirmed by numerical simulations of the basic model equations. The two relevant parameters determining the bifurcation scenario of the model can be related to the concentrations of the active molecular motors and of the filaments, respectively, which both could be easily regulated by the cell.


Subject(s)
Models, Biological , Models, Chemical , Molecular Motor Proteins/chemistry , Molecular Motor Proteins/physiology , Movement/physiology , Nonlinear Dynamics , Computer Simulation
9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(4 Pt 2): 046212, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15903775

ABSTRACT

We investigate the response of two-dimensional pattern-forming systems with a broken up-down symmetry, such as chemical reactions, to spatially resonant forcing and propose related experiments. The nonlinear behavior immediately above threshold is analyzed in terms of amplitude equations suggested for a 1:2 and 1:1 ratio between the wavelength of the spatial periodic forcing and the wavelength of the pattern of the respective system. Both sets of coupled amplitude equations are derived by a perturbative method from the Lengyel-Epstein model describing a chemical reaction showing Turing patterns, which gives us the opportunity to relate the generic response scenarios to a specific pattern-forming system. The nonlinear competition between stripe patterns and distorted hexagons is explored and their range of existence, stability, and coexistence is determined. Whereas without modulations hexagonal patterns are always preferred near onset of pattern formation, single-mode solutions (stripes) are favored close to threshold for modulation amplitudes beyond some critical value. Hence distorted hexagons only occur in a finite range of the control parameter and their interval of existence shrinks to zero with increasing values of the modulation amplitude. Furthermore, depending on the modulation amplitude, the transition between stripes and distorted hexagons is either subcritical or supercritical.

SELECTION OF CITATIONS
SEARCH DETAIL
...