Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biophys J ; 109(4): 737-49, 2015 Aug 18.
Article in English | MEDLINE | ID: mdl-26287626

ABSTRACT

The oncogenic E5 protein from bovine papillomavirus is a short (44 amino acids long) integral membrane protein that forms homodimers. It activates platelet-derived growth factor receptor (PDGFR) ß in a ligand-independent manner by transmembrane helix-helix interactions. The nature of this recognition event remains elusive, as numerous mutations are tolerated in the E5 transmembrane segment, with the exception of one hydrogen-bonding residue. Here, we examined the conformation, stability, and alignment of the E5 protein in fluid lipid membranes of substantially varying bilayer thickness, in both the absence and presence of the PDGFR transmembrane segment. Quantitative synchrotron radiation circular dichroism analysis revealed a very long transmembrane helix for E5 of ∼26 amino acids. Oriented circular dichroism and solid-state (15)N-NMR showed that the alignment and stability of this unusually long segment depend critically on the membrane thickness. When reconstituted alone in exceptionally thick DNPC lipid bilayers, the E5 helix was found to be inserted almost upright. In moderately thick bilayers (DErPC and DEiPC), it started to tilt and became slightly deformed, and finally it became aggregated in conventional DOPC, POPC, and DMPC membranes due to hydrophobic mismatch. On the other hand, when E5 was co-reconstituted with the transmembrane segment of PDGFR, it was able to tolerate even the most pronounced mismatch and was stabilized by binding to the receptor, which has the same hydrophobic length. As E5 is known to activate PDGFR within the thin membranes of the Golgi compartment, we suggest that the intrinsic hydrophobic mismatch of these two interaction partners drives them together. They seem to recognize each other by forming a closely packed bundle of mutually aligned transmembrane helices, which is further stabilized by a specific pair of hydrogen-bonding residues.


Subject(s)
Receptors, Platelet-Derived Growth Factor/chemistry , Circular Dichroism , Escherichia coli , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Lipid Bilayers/chemistry , Magnetic Resonance Spectroscopy , Protein Conformation , Protein Stability
2.
Biol Chem ; 395(12): 1443-52, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25324446

ABSTRACT

E5 is the major transforming oncoprotein of bovine papillomavirus, which activates the platelet-derived growth factor receptor ß in a highly specific manner. The short transmembrane protein E5 with only 44 residues interacts directly with the transmembrane segments of the receptor, but structural details are not available. Biophysical investigations are challenging, because the hydrophobic E5 protein tends to aggregate and get cross-linked non-specifically via two Cys residues near its C-terminus. Here, we demonstrate that a truncation by 10 amino acids creates a more manageable protein that can be conveniently used for structure analysis. Synchrotron radiation circular dichroism and solid-state (15)N- and (31)P-nuclear magnetic resonance spectroscopy show that this E5 variant serves as a representative model for the wild-type protein. The helical conformation of the transmembrane segment, its orientation in the lipid bilayer, and the ability to form homodimers in the membrane are not affected by the C-terminal truncation.


Subject(s)
Bovine papillomavirus 1/chemistry , Lipid Bilayers/chemistry , Oncogene Proteins, Viral/chemistry , Papillomavirus Infections/virology , Amino Acid Sequence , Animals , Cattle , Circular Dichroism , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Protein Multimerization
SELECTION OF CITATIONS
SEARCH DETAIL
...