Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Mol Life Sci ; 81(1): 217, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748186

ABSTRACT

The vertebrate sense of taste allows rapid assessment of the nutritional quality and potential presence of harmful substances prior to ingestion. Among the five basic taste qualities, salty, sour, sweet, umami, and bitter, bitterness is associated with the presence of putative toxic substances and elicits rejection behaviors in a wide range of animals including humans. However, not all bitter substances are harmful, some are thought to be health-beneficial and nutritious. Among those compound classes that elicit a bitter taste although being non-toxic and partly even essential for humans are bitter peptides and L-amino acids. Using functional heterologous expression assays, we observed that the 5 dominant human bitter taste receptors responsive to bitter peptides and amino acids are activated by bile acids, which are notorious for their extreme bitterness. We further demonstrate that the cross-reactivity of bitter taste receptors for these two different compound classes is evolutionary conserved and can be traced back to the amphibian lineage. Moreover, we show that the cross-detection by some receptors relies on "structural mimicry" between the very bitter peptide L-Trp-Trp-Trp and bile acids, whereas other receptors exhibit a phylogenetic conservation of this trait. As some bile acid-sensitive bitter taste receptor genes fulfill dual-roles in gustatory and non-gustatory systems, we suggest that the phylogenetic conservation of the rather surprising cross-detection of the two substance classes could rely on a gene-sharing-like mechanism in which the non-gustatory function accounts for the bitter taste response to amino acids and peptides.


Subject(s)
Bile Acids and Salts , Peptides , Receptors, G-Protein-Coupled , Taste , Bile Acids and Salts/metabolism , Humans , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Animals , Taste/physiology , Peptides/metabolism , Phylogeny , HEK293 Cells , Amino Acids/metabolism , Cell Membrane/metabolism
2.
Commun Biol ; 6(1): 612, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37286811

ABSTRACT

Beside the oral cavity, bitter taste receptors are expressed in several non-gustatory tissues. Whether extra-oral bitter taste receptors function as sensors for endogenous agonists is unknown. To address this question, we devised functional experiments combined with molecular modeling approaches to investigate human and mouse receptors using a variety of bile acids as candidate agonists. We show that five human and six mouse receptors are responsive to an array of bile acids. Moreover, their activation threshold concentrations match published data of bile acid concentrations in human body fluids, suggesting a putative physiological activation of non-gustatory bitter receptors. We conclude that these receptors could serve as sensors for endogenous bile acid levels. These results also indicate that bitter receptor evolution may not be driven solely by foodstuff or xenobiotic stimuli, but also depend on endogenous ligands. The determined bitter receptor activation profiles of bile acids now enable detailed physiological model studies.


Subject(s)
Receptors, G-Protein-Coupled , Taste , Humans , Mice , Animals , Taste/physiology , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/agonists , Ligands , Models, Molecular
3.
Front Nutr ; 9: 1082698, 2022.
Article in English | MEDLINE | ID: mdl-36601079

ABSTRACT

The composition of menus and the sequence of foodstuffs consumed during a meal underlies elaborate rules. However, the molecular foundations for the observed taste- and pleasure-raising effects of complex menus are obscure. The molecular identification and characterization of taste receptors can help to gain insight into the complex interrelationships of food items and beverages during meals. In our study, we quantified important bitter compounds in chicory and chicory-based surrogate coffee and used them to identify responsive bitter taste receptors. The two receptors, TAS2R43 and TAS2R46, are exquisitely sensitive to lactucin, lactucopicrin, and 11ß,13-dihydrolactucin. Sensory testing demonstrated a profound influence of the sequence of consumption of chicory, surrogate coffee, and roasted coffee on the perceived bitterness by human volunteers. These findings pave the way for a molecular understanding of some of the mixture effects underlying empirical meal compositions.

4.
Proc Biol Sci ; 288(1947): 20210418, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33784867

ABSTRACT

The bitter taste sensation is important to warn mammals of the ingestion of potentially toxic food compounds. For mammals, whose nutrition relies on highly specific food sources, such as blood in the case of vampire bats, it is unknown if bitter sensing is involved in prey selection. By contrast to other bat species, vampire bats exhibit numerous bitter taste receptor pseudogenes, which could point to a decreased importance of bitter taste. However, electrophysiological and behavioural studies suggest the existence of functional bitter taste transmission. To determine the agonist spectra of the three bitter taste receptors that are conserved in all three vampire bat species, we investigated the in vitro activation of Desmodus rotundus T2R1, T2R4 and T2R7. Using a set of 57 natural and synthetic bitter compounds, we were able to identify agonists for all three receptors. Hence, we confirmed a persisting functionality and, consequently, a putative biological role of bitter taste receptors in vampire bats. Furthermore, the activation of the human TAS2R7 by metal ions is shown to be conserved in D. rotundus.


Subject(s)
Chiroptera , Animals , Chiroptera/genetics , Humans , Ions , Pseudogenes , Receptors, G-Protein-Coupled/genetics , Taste
5.
Molecules ; 25(19)2020 Sep 26.
Article in English | MEDLINE | ID: mdl-32993119

ABSTRACT

The finding that bitter taste receptors are expressed in numerous tissues outside the oral cavity and fulfill important roles in metabolic regulation, innate immunity and respiratory control, have made these receptors important targets for drug discovery. Efficient drug discovery depends heavily on detailed knowledge on structure-function-relationships of the target receptors. Unfortunately, experimental structures of bitter taste receptors are still lacking, and hence, the field relies mostly on structures obtained by molecular modeling combined with functional experiments and point mutageneses. The present article summarizes the current knowledge on the structure-function relationships of human bitter taste receptors. Although these receptors are difficult to express in heterologous systems and their homology with other G protein-coupled receptors is very low, detailed information are available at least for some of these receptors.


Subject(s)
Models, Molecular , Receptors, G-Protein-Coupled/chemistry , Humans , Immunity, Innate , Point Mutation , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/immunology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...