Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; : e202404645, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801173

ABSTRACT

Phenotypic assays detect small-molecule bioactivity at functionally relevant cellular sites, and inherently cover a variety of targets and mechanisms of action. They can uncover new small molecule-target pairs and may give rise to novel biological insights. By means of an osteoblast differentiation assay which employs a Hedgehog (Hh) signaling agonist as stimulus and which monitors an endogenous marker for osteoblasts, we identified a pyrrolo[3,4-g]quinoline (PQ) pseudo-natural product (PNP) class of osteogenesis inhibitors. The most potent PQ, termed Tafbromin, impairs canonical Hh signaling and modulates osteoblast differentiation through binding to the bromodomain 2 of the TATA-box binding protein-associated factor 1 (TAF1). Tafbromin is the most selective TAF1 bromodomain 2 ligand and promises to be an invaluable tool for the study of biological processes mediated by TAF1(2) bromodomains.

2.
Adv Sci (Weinh) ; 11(21): e2309202, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38569218

ABSTRACT

The pseudo-natural product (pseudo-NP) concept aims to combine NP fragments in arrangements that are not accessible through known biosynthetic pathways. The resulting compounds retain the biological relevance of NPs but are not yet linked to bioactivities and may therefore be best evaluated by unbiased screening methods resulting in the identification of unexpected or unprecedented bioactivities. Herein, various NP fragments are combined with a tricyclic core connectivity via interrupted Fischer indole and indole dearomatization reactions to provide a collection of highly three-dimensional pseudo-NPs. Target hypothesis generation by morphological profiling via the cell painting assay guides the identification of an unprecedented chemotype for Aurora kinase inhibition with both its relatively highly 3D structure and its physicochemical properties being very different from known inhibitors. Biochemical and cell biological characterization indicate that the phenotype identified by the cell painting assay corresponds to the inhibition of Aurora kinase B.


Subject(s)
Biological Products , Protein Kinase Inhibitors , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Biological Products/pharmacology , Biological Products/chemistry , Aurora Kinases/antagonists & inhibitors , Aurora Kinases/metabolism , Drug Discovery/methods , Aurora Kinase B/antagonists & inhibitors , Aurora Kinase B/metabolism
3.
J Med Chem ; 67(11): 8862-8876, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38687818

ABSTRACT

Screening for small-molecule modulators of disease-relevant targets and phenotypes is the first step on the way to new drugs. Large compound libraries have been synthesized by academia and, particularly, pharmaceutical companies to meet the need for novel chemical entities that are as diverse as possible. Screening of these compound libraries revealed a portion of small molecules that is inactive in more than 100 different assays and was therefore termed "dark chemical matter" (DCM). Deorphanization of DCM promises to yield very selective compounds as they are expected to have less off-target effects. We employed morphological profiling using the Cell Painting assay to detect bioactive DCM. Within the DCM collection, we identified bioactive compounds and confirmed several modulators of microtubules, DNA synthesis, and pyrimidine biosynthesis. Profiling approaches are, therefore, powerful tools to probe compound collections for bioactivity in an unbiased manner and are particularly suitable for deorphanization of DCM.


Subject(s)
Small Molecule Libraries , Humans , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Microtubules/drug effects , Microtubules/metabolism , DNA/chemistry , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis , Cell Line, Tumor
4.
J Med Chem ; 67(6): 4691-4706, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38470246

ABSTRACT

Disease-related phenotypic assays enable unbiased discovery of novel bioactive small molecules and may provide novel insights into physiological systems and unprecedented molecular modes of action (MMOA). Herein, we report the identification and characterization of epoxykynin, a potent inhibitor of the soluble epoxide hydrolase (sEH). Epoxykynin was discovered by means of a cellular assay monitoring modulation of kynurenine (Kyn) levels in BxPC-3 cells upon stimulation with the cytokine interferon-γ (IFN-γ) and subsequent target identification employing affinity-based chemical proteomics. Increased Kyn levels are associated with immune suppression in the tumor microenvironment and, thus, the Kyn pathway and its key player indoleamine 2,3-dioxygenase 1 (IDO1) are appealing targets in immuno-oncology. However, targeting IDO1 directly has led to limited success in clinical investigations, demonstrating that alternative approaches to reduce Kyn levels are in high demand. We uncover a cross-talk between sEH and the Kyn pathway that may provide new opportunities to revert cancer-induced immune tolerance.


Subject(s)
Kynurenine , Neoplasms , Humans , Kynurenine/metabolism , Neoplasms/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase , Tumor Microenvironment
5.
Nat Chem ; 16(6): 945-958, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38365941

ABSTRACT

The efficient exploration of biologically relevant chemical space is essential for the discovery of bioactive compounds. A molecular design principle that possesses both biological relevance and structural diversity may more efficiently lead to compound collections that are enriched in diverse bioactivities. Here the diverse pseudo-natural product (PNP) strategy, which combines the biological relevance of the PNP concept with synthetic diversification strategies from diversity-oriented synthesis, is reported. A diverse PNP collection was synthesized from a common divergent intermediate through developed indole dearomatization methodologies to afford three-dimensional molecular frameworks that could be further diversified via intramolecular coupling and/or carbon monoxide insertion. In total, 154 PNPs were synthesized representing eight different classes. Cheminformatic analyses showed that the PNPs are structurally diverse between classes. Biological investigations revealed the extent of diverse bioactivity enrichment of the collection in which four inhibitors of Hedgehog signalling, DNA synthesis, de novo pyrimidine biosynthesis and tubulin polymerization were identified from four different PNP classes.


Subject(s)
Biological Products , Biological Products/chemistry , Biological Products/chemical synthesis , Indoles/chemistry , Indoles/chemical synthesis , Humans , Molecular Structure , Hedgehog Proteins/metabolism , Hedgehog Proteins/antagonists & inhibitors
6.
Angew Chem Int Ed Engl ; 62(48): e202310222, 2023 11 27.
Article in English | MEDLINE | ID: mdl-37818743

ABSTRACT

Monoterpene indole alkaloids (MIAs) are endowed with high structural and spatial complexity and characterized by diverse biological activities. Given this complexity-activity combination in MIAs, rapid and efficient access to chemical matter related to and with complexity similar to these alkaloids would be highly desirable, since such compound classes might display novel bioactivity. We describe the design and synthesis of a pseudo-natural product (pseudo-NP) collection obtained by the unprecedented combination of MIA fragments through complexity-generating transformations, resulting in arrangements not currently accessible by biosynthetic pathways. Cheminformatic analyses revealed that both the pseudo-NPs and the MIAs reside in a unique and common area of chemical space with high spatial complexity-density that is only sparsely populated by other natural products and drugs. Investigation of bioactivity guided by morphological profiling identified pseudo-NPs that inhibit DNA synthesis and modulate tubulin. These results demonstrate that the pseudo-NP collection occupies similar biologically relevant chemical space that Nature has endowed MIAs with.


Subject(s)
Alkaloids , Monoterpenes , Indole Alkaloids
7.
Chembiochem ; 24(24): e202300579, 2023 12 14.
Article in English | MEDLINE | ID: mdl-37869939

ABSTRACT

Lipidation of the LC3 protein has frequently been employed as a marker of autophagy. However, LC3-lipidation is also triggered by stimuli not related to canonical autophagy. Therefore, characterization of the driving parameters for LC3 lipidation is crucial to understanding the biological roles of LC3. We identified a pseudo-natural product, termed Inducin, that increases LC3 lipidation independently of canonical autophagy, impairs lysosomal function and rapidly recruits Galectin 3 to lysosomes. Inducin treatment promotes Endosomal Sorting Complex Required for Transport (ESCRT)-dependent membrane repair and transcription factor EB (TFEB)-dependent lysosome biogenesis ultimately leading to cell death.


Subject(s)
Autophagy , Lysosomes , Biological Transport , Galectin 3 , Endosomal Sorting Complexes Required for Transport/metabolism
8.
Cell Chem Biol ; 30(7): 839-853.e7, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37385259

ABSTRACT

Fast prediction of the mode of action (MoA) for bioactive compounds would immensely foster bioactivity annotation in compound collections and may early on reveal off-targets in chemical biology research and drug discovery. Morphological profiling, e.g., using the Cell Painting assay, offers a fast, unbiased assessment of compound activity on various targets in one experiment. However, due to incomplete bioactivity annotation and unknown activities of reference compounds, prediction of bioactivity is not straightforward. Here we introduce the concept of subprofile analysis to map the MoA for both, reference and unexplored compounds. We defined MoA clusters and extracted cluster subprofiles that contain only a subset of morphological features. Subprofile analysis allows for the assignment of compounds to, currently, twelve targets or MoA. This approach enables rapid bioactivity annotation of compounds and will be extended to further clusters in the future.


Subject(s)
Drug Discovery , Small Molecule Libraries , Drug Discovery/methods , Small Molecule Libraries/chemistry
9.
Angew Chem Int Ed Engl ; 62(36): e202307317, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37358186

ABSTRACT

Pyrazolones represent an important structural motif in active pharmaceutical ingredients. Their asymmetric synthesis is thus widely studied. Still, a generally highly enantio- and diastereoselective 1,4-addition to nitroolefins providing products with adjacent stereocenters is elusive. In this article, a new polyfunctional CuII -1,2,3-triazolium-aryloxide catalyst is presented which enables this reaction type with high stereocontrol. DFT studies revealed that the triazolium stabilizes the transition state by hydrogen bonding between C(5)-H and the nitroolefin and verify a cooperative mode of activation. Moreover, they show that the catalyst adopts a rigid chiral cage/pore structure by intramolecular hydrogen bonding, by which stereocontrol is achieved. Control catalyst systems confirm the crucial role of the triazolium, aryloxide and CuII , requiring a sophisticated structural orchestration for high efficiency. The addition products were used to form pyrazolidinones by chemoselective C=N reduction. These heterocycles are shown to be valuable precursors toward ß,γ'-diaminoamides by chemoselective nitro and N-N bond reductions. Morphological profiling using the Cell painting assay identified biological activities for the pyrazolidinones and suggest modulation of DNA synthesis as a potential mode of action. One product showed biological similarity to Camptothecin, a lead structure for cancer therapy.

10.
Angew Chem Int Ed Engl ; 62(21): e202301955, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36929571

ABSTRACT

Oxindoles and iso-oxindoles are natural product-derived scaffolds that provide inspiration for the design and synthesis of novel biologically relevant compound classes. Notably, the spirocyclic connection of oxindoles with iso-oxindoles has not been explored by nature but promises to provide structurally related compounds endowed with novel bioactivity. Therefore, methods for their efficient synthesis and the conclusive discovery of their cellular targets are highly desirable. We describe a selective RhIII -catalyzed scaffold-divergent synthesis of spirooxindole-isooxindoles and spirooxindole-oxindoles from differently protected diazooxindoles and N-pivaloyloxy aryl amides which includes a functional group-controlled Lossen rearrangement as key step. Unbiased morphological profiling of a corresponding compound collection in the Cell Painting assay efficiently identified the mitotic kinesin Eg5 as the cellular target of the spirooxindoles, defining a unique Eg5 inhibitor chemotype.


Subject(s)
Kinesins , Oxindoles
11.
J Med Chem ; 65(24): 16268-16289, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36459434

ABSTRACT

Identification and analysis of small molecule bioactivity in target-agnostic cellular assays and monitoring changes in phenotype followed by identification of the biological target are a powerful approach for the identification of novel bioactive chemical matter in particular when the monitored phenotype is disease-related and physiologically relevant. Profiling methods that enable the unbiased analysis of compound-perturbed states can suggest mechanisms of action or even targets for bioactive small molecules and may yield novel insights into biology. Here we report the enantioselective synthesis of natural-product-inspired 8-oxotetrahydroprotoberberines and the identification of Picoberin, a low picomolar inhibitor of Hedgehog (Hh)-induced osteoblast differentiation. Global transcriptome and proteome profiling revealed the aryl hydrocarbon receptor (AhR) as the molecular target of this compound and identified a cross talk between Hh and AhR signaling during osteoblast differentiation.


Subject(s)
Hedgehog Proteins , Receptors, Aryl Hydrocarbon , Receptors, Aryl Hydrocarbon/genetics , Signal Transduction , Cell Differentiation , Osteoblasts/metabolism
12.
Chembiochem ; 23(22): e202200475, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36134475

ABSTRACT

Profiling approaches have been increasingly employed for the characterization of disease-relevant phenotypes or compound perturbation as they provide a broad, unbiased view on impaired cellular states. We report that morphological profiling using the cell painting assay (CPA) can detect modulators of de novo pyrimidine biosynthesis and of dihydroorotate dehydrogenase (DHODH) in particular. The CPA can differentiate between impairment of pyrimidine and folate metabolism, which both affect cellular nucleotide pools. The identified morphological signature is shared by inhibitors of DHODH and the functionally tightly coupled complex III of the mitochondrial respiratory chain as well as by UMP synthase, which is downstream of DHODH. The CPA appears to be particularly suited for the detection of DHODH inhibitors at the site of their action in cells. As DHODH is a validated therapeutic target, the CPA will enable unbiased identification of DHODH inhibitors and inhibitors of de novo pyrimidine biosynthesis for biological research and drug discovery.


Subject(s)
Oxidoreductases Acting on CH-CH Group Donors , Dihydroorotate Dehydrogenase , Enzyme Inhibitors/pharmacology , Pyrimidines/pharmacology , Drug Discovery
13.
Chemistry ; 28(67): e202202164, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36083197

ABSTRACT

Pseudo-natural products (pseudo-NPs) are de novo combinations of natural product (NP) fragments that define novel bioactive chemotypes. For their discovery, new design principles are being sought. Previously, pseudo-NPs were synthesized by the combination of fragments originating from biosynthetically unrelated NPs to guarantee structural novelty and novel bioactivity. We report the combination of fragments from biosynthetically related NPs in novel arrangements to yield a novel chemotype with activity not shared by the guiding fragments. We describe the synthesis of the polyketide pseudo-NP grismonone and identify it as a structurally novel and potent inhibitor of Hedgehog signaling. The insight that the de novo combination of fragments derived from biosynthetically related NPs may also yield new biologically relevant compound classes with unexpected bioactivity may be considered a chemical extension or diversion of existing biosynthetic pathways and greatly expands the opportunities for exploration of biologically relevant chemical space by means of the pseudo-NP principle.


Subject(s)
Antineoplastic Agents , Biological Products , Polyketides , Biological Products/chemistry , Hedgehog Proteins/metabolism , Biosynthetic Pathways
14.
Angew Chem Int Ed Engl ; 61(40): e202209374, 2022 10 04.
Article in English | MEDLINE | ID: mdl-35959923

ABSTRACT

Natural product (NP)-inspired design principles provide invaluable guidance for bioactive compound discovery. Pseudo-natural products (PNPs) are de novo combinations of NP fragments to target biologically relevant chemical space not covered by NPs. We describe the design and synthesis of apoxidoles, a novel pseudo-NP class, whereby indole- and tetrahydropyridine fragments are linked in monopodal connectivity not found in nature. Apoxidoles are efficiently accessible by an enantioselective [4+2] annulation reaction. Biological evaluation revealed that apoxidoles define a new potent type IV inhibitor chemotype of indoleamine 2,3-dioxygenase 1 (IDO1), a heme-containing enzyme considered a target for the treatment of neurodegeneration, autoimmunity and cancer. Apoxidoles target apo-IDO1, prevent heme binding and induce unique amino acid positioning as revealed by crystal structure analysis. Novel type IV apo-IDO1 inhibitors are in high demand, and apoxidoles may provide new opportunities for chemical biology and medicinal chemistry research.


Subject(s)
Biological Products , Amino Acids , Biological Products/chemistry , Biological Products/pharmacology , Enzyme Inhibitors/chemistry , Heme , Indoleamine-Pyrrole 2,3,-Dioxygenase , Indoles , Pyrrolidines , Structure-Activity Relationship
15.
Angew Chem Int Ed Engl ; 61(18): e202115193, 2022 04 25.
Article in English | MEDLINE | ID: mdl-35170181

ABSTRACT

For the discovery of novel chemical matter generally endowed with bioactivity, strategies may be particularly efficient that combine previous insight about biological relevance, e.g., natural product (NP) structure, with methods that enable efficient coverage of chemical space, such as fragment-based design. We describe the de novo combination of different 5-membered NP-derived N-heteroatom fragments to structurally unprecedented "pseudo-natural products" in an efficient complexity-generating and enantioselective one-pot synthesis sequence. The pseudo-NPs inherit characteristic elements of NP structure but occupy areas of chemical space not covered by NP-derived chemotypes, and may have novel biological targets. Investigation of the pseudo-NPs in unbiased phenotypic assays and target identification led to the discovery of the first small-molecule ligand of the RHO GDP-dissociation inhibitor 1 (RHOGDI1), termed Rhonin. Rhonin inhibits the binding of the RHOGDI1 chaperone to GDP-bound RHO GTPases and alters the subcellular localization of RHO GTPases.


Subject(s)
Biological Products , Biological Products/chemistry , Ligands , rho GTP-Binding Proteins , rho Guanine Nucleotide Dissociation Inhibitor alpha , rho-Specific Guanine Nucleotide Dissociation Inhibitors
16.
Cell Chem Biol ; 29(6): 1053-1064.e3, 2022 06 16.
Article in English | MEDLINE | ID: mdl-34968420

ABSTRACT

In phenotypic compound discovery, conclusive identification of cellular targets and mode of action are often impaired by off-target binding. In particular, microtubules are frequently targeted in cellular assays. However, in vitro tubulin binding assays do not correctly reflect the cellular context, and conclusive high-throughput phenotypic assays monitoring tubulin binding are scarce, such that tubulin binding is rarely identified. We report that morphological profiling using the Cell Painting assay (CPA) can efficiently detect tubulin modulators in compound collections with a high throughput, including annotated reference compounds and unannotated compound classes with unrelated chemotypes and scaffolds. Small-molecule tubulin binders share similar CPA fingerprints, which enables prediction and experimental validation of microtubule-binding activity. Our findings suggest that CPA or a related morphological profiling approach will be an invaluable addition to small-molecule discovery programs in chemical biology and medicinal chemistry, enabling early identification of one of the most frequently observed off-target activities.


Subject(s)
Antineoplastic Agents , Tubulin , Antineoplastic Agents/pharmacology , High-Throughput Screening Assays , Microtubules/metabolism , Protein Binding , Tubulin/chemistry , Tubulin Modulators/chemistry , Tubulin Modulators/pharmacology
17.
Cell Chem Biol ; 28(12): 1780-1794.e5, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34214450

ABSTRACT

Unbiased profiling approaches are powerful tools for small-molecule target or mode-of-action deconvolution as they generate a holistic view of the bioactivity space. This is particularly important for non-protein targets that are difficult to identify with commonly applied target identification methods. Thereby, unbiased profiling can enable identification of novel bioactivity even for annotated compounds. We report the identification of a large bioactivity cluster comprised of numerous well-characterized drugs with different primary targets using a combination of the morphological Cell Painting Assay and proteome profiling. Cluster members alter cholesterol homeostasis and localization due to their physicochemical properties that lead to protonation and accumulation in lysosomes, an increase in lysosomal pH, and a disturbed cholesterol homeostasis. The identified cluster enables identification of modulators of cholesterol homeostasis and links regulation of genes or proteins involved in cholesterol synthesis or trafficking to physicochemical properties rather than to nominal targets.


Subject(s)
Cholesterol/metabolism , Proteome/metabolism , Animals , Cell Line , Female , Humans , Mice
18.
Cell Chem Biol ; 28(3): 300-319, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33740434

ABSTRACT

Profiling approaches such as gene expression or proteome profiling generate small-molecule bioactivity profiles that describe a perturbed cellular state in a rather unbiased manner and have become indispensable tools in the evaluation of bioactive small molecules. Automated imaging and image analysis can record morphological alterations that are induced by small molecules through the detection of hundreds of morphological features in high-throughput experiments. Thus, morphological profiling has gained growing attention in academia and the pharmaceutical industry as it enables detection of bioactivity in compound collections in a broader biological context in the early stages of compound development and the drug-discovery process. Profiling may be used successfully to predict mode of action or targets of unexplored compounds and to uncover unanticipated activity for already characterized small molecules. Here, we review the reported approaches to morphological profiling and the kind of bioactivity that can be detected so far and, thus, predicted.


Subject(s)
High-Throughput Screening Assays , Small Molecule Libraries/analysis , Drug Discovery , Drug Industry , Humans
19.
Angew Chem Int Ed Engl ; 60(18): 9869-9874, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33565680

ABSTRACT

The immunoregulatory enzyme indoleamine-2,3-dioxygenase (IDO1) strengthens cancer immune escape, and inhibition of IDO1 by means of new chemotypes and mechanisms of action is considered a promising opportunity for IDO1 inhibitor discovery. IDO1 is a cofactor-binding, redox-sensitive protein, which calls for monitoring of IDO1 activity in its native cellular environment. We developed a new, robust fluorescence-based assay amenable to high throughput, which detects kynurenine in cells. Screening of a ca. 150 000-member compound library discovered unprecedented, potent IDO1 modulators with different mechanisms of action, including direct IDO1 inhibitors, regulators of IDO1 expression, and inhibitors of heme synthesis. Three IDO1-modulator chemotypes were identified that bind to apo-IDO1 and compete with the heme cofactor. Our new cell-based technology opens up novel opportunities for medicinal chemistry programs in immuno-oncology.


Subject(s)
Enzyme Inhibitors/pharmacology , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Cell Line, Tumor , Coumarins/chemistry , Enzyme Inhibitors/chemistry , Fluorescent Dyes/chemistry , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Kynurenine/analysis , Molecular Structure
20.
Cell Chem Biol ; 28(6): 848-854.e5, 2021 06 17.
Article in English | MEDLINE | ID: mdl-33567254

ABSTRACT

Phenotypic screening for bioactive small molecules is typically combined with affinity-based chemical proteomics to uncover the respective molecular targets. However, such assays and the explored bioactivity are biased toward the monitored phenotype, and target identification often requires chemical derivatization of the hit compound. In contrast, unbiased cellular profiling approaches record hundreds of parameters upon compound perturbation to map bioactivity in a broader biological context and may link a profile to the molecular target or mode of action. Herein we report the discovery of the diaminopyrimidine DP68 as a Sigma 1 (σ1) receptor antagonist by combining morphological profiling using the Cell Painting assay and thermal proteome profiling. Our results highlight that integration of complementary profiling approaches may enable both detection of bioactivity and target identification for small molecules.


Subject(s)
Aniline Compounds/pharmacology , Drug Discovery , Heterocyclic Compounds, 2-Ring/pharmacology , Proteome/genetics , Receptors, sigma/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Temperature , Aniline Compounds/chemistry , Animals , Female , Gene Expression Profiling , Heterocyclic Compounds, 2-Ring/chemistry , Humans , Mice , Molecular Structure , Small Molecule Libraries/chemistry , Tumor Cells, Cultured , Sigma-1 Receptor
SELECTION OF CITATIONS
SEARCH DETAIL
...