Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Bacteriol ; 193(8): 1843-53, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21317335

ABSTRACT

The genome of Burkholderia cenocepacia contains two genes encoding closely related LysR-type transcriptional regulators, CysB and SsuR, involved in control of sulfur assimilation processes. In this study we show that the function of SsuR is essential for the utilization of a number of organic sulfur sources of either environmental or human origin. Among the genes upregulated by SsuR identified here are the tauABC operon encoding a predicted taurine transporter, three tauD-type genes encoding putative taurine dioxygenases, and atsA encoding a putative arylsulfatase. The role of SsuR in expression of these genes/operons was characterized through (i) construction of transcriptional reporter fusions to candidate promoter regions and analysis of their expression in the presence/absence of SsuR and (ii) testing the ability of SsuR to bind SsuR-responsive promoter regions. We also demonstrate that expression of SsuR-activated genes is not repressed in the presence of inorganic sulfate. A more detailed analysis of four SsuR-responsive promoter regions indicated that ~44 bp of the DNA sequence preceding and/or overlapping the predicted -35 element of such promoters is sufficient for SsuR binding. The DNA sequence homology among SsuR "recognition motifs" at different responsive promoters appears to be limited.


Subject(s)
Burkholderia cenocepacia/genetics , Burkholderia cenocepacia/metabolism , Gene Expression Regulation, Bacterial , Metabolic Networks and Pathways/genetics , Sulfur/metabolism , Transcription Factors/metabolism , Artificial Gene Fusion , Base Sequence , DNA Footprinting , Electrophoretic Mobility Shift Assay , Gene Expression Profiling , Genes, Reporter , Humans , Molecular Sequence Data , Operon , Promoter Regions, Genetic , Protein Binding
2.
J Bacteriol ; 189(5): 1675-88, 2007 Mar.
Article in English | MEDLINE | ID: mdl-16997956

ABSTRACT

Two genes encoding transcriptional regulators involved in sulfur assimilation pathways in Burkholderia cenocepacia strain 715j have been identified and characterized functionally. Knockout mutations in each of the B. cenocepacia genes were constructed and introduced into the genome of 715j by allelic replacement. Studies on the utilization of various sulfur sources by 715j and the obtained mutants demonstrated that one of the B. cenocepacia regulators, designated CysB, is preferentially involved in the control of sulfate transport and reduction, while the other, designated SsuR, is required for aliphatic sulfonate utilization. Using transcriptional promoter-lacZ fusions and DNA-binding experiments, we identified several target promoters for positive control by CysB and/or SsuR--sbpp (preceding the sbp cysT cysW cysA ssuR cluster), cysIp (preceding the cysI cysD1 cysN cysH cysG cluster), cysD2p (preceding a separate cluster, cysD2 cysNC), and ssuDp (located upstream of the ssuDCB operon)--and we demonstrated overlapping functions of CysB and SsuR at particular promoters. We also demonstrated that the cysB gene is negatively controlled by both CysB and SsuR but the ssuR gene itself is not significantly regulated as a separate transcription unit. The function of B. cenocepacia CysB (in vivo and in vitro) appeared to be independent of the presence of acetylserine, the indispensable coinducer of the CysB regulators of Escherichia coli and Salmonella. The phylogenetic relationships among members of the "CysB family" in the gamma and beta subphyla are presented.


Subject(s)
Bacterial Proteins/physiology , Burkholderia/metabolism , Gene Expression Regulation, Bacterial , Sulfur/metabolism , Transcription Factors/physiology , Alkanesulfonates/metabolism , Amino Acid Sequence , Base Sequence , Burkholderia/genetics , Cloning, Molecular , DNA/metabolism , Genome, Bacterial , Molecular Sequence Data , Phenotype , Phylogeny , Promoter Regions, Genetic , Serine/analogs & derivatives , Serine/pharmacology , Sulfates/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...