Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Cell Tissue Res ; 387(1): 13-27, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34674044

ABSTRACT

The olfactory system allows animals to navigate in their environment to feed, mate, and escape predators. It is well established that odorant exposure or electrical stimulation of the olfactory system induces stereotyped motor responses in fishes. However, the neural circuitry responsible for the olfactomotor transformations is only beginning to be unraveled. A neural substrate eliciting motor responses to olfactory inputs was identified in the lamprey, a basal vertebrate used extensively to examine the neural mechanisms underlying sensorimotor transformations. Two pathways were discovered from the olfactory organ in the periphery to the brainstem motor nuclei responsible for controlling swimming. The first pathway originates from sensory neurons located in the accessory olfactory organ and reaches a single population of projection neurons in the medial olfactory bulb, which, in turn, transmit the olfactory signals to the posterior tuberculum and then to downstream brainstem locomotor centers. A second pathway originates from the main olfactory epithelium and reaches the main olfactory bulb, the neurons of which project to the pallium/cortex. The olfactory signals are then conveyed to the posterior tuberculum and then to brainstem locomotor centers. Olfactomotor behavior can adapt, and studies were aimed at defining the underlying neural mechanisms. Modulation of bulbar neural activity by GABAergic, dopaminergic, and serotoninergic inputs is likely to provide strong control over the hardwired circuits to produce appropriate motor behavior in response to olfactory cues. This review summarizes current knowledge relative to the neural circuitry producing olfactomotor behavior in lampreys and their modulatory mechanisms.


Subject(s)
Locomotion/physiology , Smell/physiology , Animals , Lampreys
2.
J Comp Neurol ; 528(13): 2239-2253, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32080843

ABSTRACT

Individual receptor neurons in the peripheral olfactory organ extend long axons into the olfactory bulb forming synapses with projection neurons in spherical neuropil regions, called glomeruli. Generally, odor map formation and odor processing in all vertebrates is based on the assumption that receptor neuron axons exclusively connect to a single glomerulus without any axonal branching. We comparatively tested this hypothesis in multiple fish and amphibian species (both sexes) by applying sparse cell electroporation to trace single olfactory receptor neuron axons. Sea lamprey (jawless fish) and zebrafish (bony fish) support the unbranched axon concept, with 94% of axons terminating in single glomeruli. Contrastingly, axonal projections of the axolotl (salamander) branch extensively before entering up to six distinct glomeruli. Receptor neuron axons labeled in frog species (Pipidae, Bufonidae, Hylidae, and Dendrobatidae) predominantly bifurcate before entering a glomerulus and 59 and 50% connect to multiple glomeruli in larval and postmetamorphotic animals, respectively. Independent of developmental stage, lifestyle, and adaptations to specific habitats, it seems to be a common feature of amphibian olfactory receptor neuron axons to frequently bifurcate and connect to multiple glomeruli. Our study challenges the unbranched axon concept as a universal vertebrate feature and it is conceivable that also later diverging vertebrates deviate from it. We propose that this unusual wiring logic evolved around the divergence of the terrestrial tetrapod lineage from its aquatic ancestors and could be the basis of an alternative way of odor processing.


Subject(s)
Olfactory Receptor Neurons/physiology , Ambystoma mexicanum , Amphibians , Animals , Bufo marinus , Female , Male , Olfactory Receptor Neurons/chemistry , Petromyzon , Species Specificity , Xenopus
3.
J Comp Neurol ; 528(1): 114-134, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31286519

ABSTRACT

Detection of chemical cues is important to guide locomotion in association with feeding and sexual behavior. Two neural pathways responsible for odor-evoked locomotion have been characterized in the sea lamprey (Petromyzon marinus L.), a basal vertebrate. There is a medial pathway originating in the medial olfactory bulb (OB) and a lateral pathway originating from the rest of the OB. These olfactomotor pathways are present throughout the life cycle of lampreys, but olfactory-driven behaviors differ according to the developmental stage. Among possible mechanisms, dopaminergic (DA) modulation in the OB might explain the behavioral changes. Here, we examined DA modulation of olfactory transmission in lampreys. Immunofluorescence against DA revealed immunoreactivity in the OB that was denser in the medial part (medOB), where processes were observed close to primary olfactory afferents and projection neurons. Dopaminergic neurons labeled by tracer injections in the medOB were located in the OB, the posterior tuberculum, and the dorsal hypothalamic nucleus, suggesting the presence of both intrinsic and extrinsic DA innervation. Electrical stimulation of the olfactory nerve in an in vitro whole-brain preparation elicited synaptic responses in reticulospinal cells that were modulated by DA. Local injection of DA agonists in the medOB decreased the reticulospinal cell responses whereas the D2 receptor antagonist raclopride increased the response amplitude. These observations suggest that DA in the medOB could modulate odor-evoked locomotion. Altogether, these results show the presence of a DA innervation within the medOB that may play a role in modulating olfactory inputs to the motor command system of lampreys.


Subject(s)
Dopamine/metabolism , Dopaminergic Neurons/metabolism , Locomotion/physiology , Olfactory Bulb/metabolism , Petromyzon/metabolism , Smell/physiology , Animals , Dopamine Agonists/pharmacology , Dopaminergic Neurons/chemistry , Dopaminergic Neurons/drug effects , Female , Male , Odorants , Olfactory Bulb/chemistry , Olfactory Bulb/drug effects , Olfactory Nerve/chemistry , Olfactory Nerve/drug effects , Olfactory Nerve/metabolism , Smell/drug effects
4.
J Comp Neurol ; 528(5): 865-878, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31625610

ABSTRACT

Solitary chemosensory cells (SCCs) and their innervating fibers are located in the respiratory system of many vertebrates, including papillae on lamprey gill pores. In order to gain stronger insight for the role of these chemosensory cells, we examined immunocytochemical and innervation characteristics, as well as abundance at the different stages of the lamprey life cycle. The SCCs were distinguished from the surrounding epithelial cells by calretinin and phospholipase C140 immunoreactivity. Nerve fibers extended into the gill pore papillae, as far as the SCCs and serotonergic fibers extended from the underlying dermis into the papillar base. Gill pore papillae were absent and SCCs were sparse during the larval stage and in newly transformed lamprey. Few SCCs were located on small nub-like papillae during the parasitic juvenile stage, but SCCs were abundant on prominent papillae in migrating and in spawning adults. These findings show similarities between the SCCs in lampreys and other vertebrates and suggest that gill SCC function may be important during the feeding juvenile and the adult stages of the lamprey life cycle.


Subject(s)
Chemoreceptor Cells/cytology , Gills/innervation , Animals , Epithelial Cells/cytology , Immunohistochemistry , Lampreys
5.
J Comp Neurol ; 528(4): 664-686, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31605382

ABSTRACT

Molecules present in an animal's environment can indicate the presence of predators, food, or sexual partners and consequently, induce migratory, reproductive, foraging, or escape behaviors. Three sensory systems, the olfactory, gustatory, and solitary chemosensory cell (SCC) systems detect chemical stimuli in vertebrates. While a great deal of research has focused on the olfactory and gustatory system over the years, it is only recently that significant attention has been devoted to the SCC system. The SCCs are microvillous cells that were first discovered on the skin of fish, and later in amphibians, reptiles, and mammals. Lampreys also possess SCCs that are particularly numerous on cutaneous papillae. However, little is known regarding their precise distribution, innervation, and function. Here, we show that sea lampreys (Petromyzon marinus L.) have cutaneous papillae located around the oral disk, nostril, gill pores, and on the dorsal fins and that SCCs are particularly numerous on these papillae. Tract-tracing experiments demonstrated that the oral and nasal papillae are innervated by the trigeminal nerve, the gill pore papillae are innervated by branchial nerves, and the dorsal fin papillae are innervated by spinal nerves. We also characterized the response profile of gill pore papillae to some chemicals and showed that trout-derived chemicals, amino acids, and a bile acid produced potent responses. Together with a companion study (Suntres et al., Journal of Comparative Neurology, this issue), our results provide new insights on the function and evolution of the SCC system in vertebrates.


Subject(s)
Epidermis/anatomy & histology , Epidermis/physiology , Petromyzon/anatomy & histology , Petromyzon/physiology , Sensory Receptor Cells/physiology , Animals , Epidermis/chemistry , Epithelium/anatomy & histology , Epithelium/chemistry , Epithelium/physiology , Female , Male , Sensory Receptor Cells/chemistry , Skin/anatomy & histology , Skin/chemistry , Skin/ultrastructure
6.
G3 (Bethesda) ; 9(3): 933-941, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30670609

ABSTRACT

Olfaction mediates behaviors necessary for survival and reproduction in fishes. Anthropogenic inputs of contaminants into aquatic environments, specifically copper, are known to disrupt a broad range of olfactory-mediated behaviors and can cause long-lasting damage even at low concentrations that have profound impacts on the biology of aquatic organisms. The sea lamprey (Petromyzon marinus) is a primitive fish species invasive to the North American Great Lakes that relies on olfaction to navigate during natal homing and in mate choice during reproduction. To investigate effects of copper on sea lamprey olfaction and the potential for maintenance of olfactory function during copper exposure, we exposed juvenile sea lamprey to environmentally ecologically relevant copper concentrations (0, 5, 10 and 30 µg/L) for 24 hr and characterized gene transcription response in olfactory tissue (i.e., peripheral olfactory organ and olfactory bulb) and forebrain using whole transcriptome sequencing. Copper exposure induced a pattern of positive dose-dependent transcriptional response. Expression changes primarily reflected up-regulation of genes involved in apoptosis and wound healing. Unlike higher vertebrates, genes specifically related to the olfactory senses of the sea lamprey, e.g., olfactory receptors, exhibited little transcriptional response to copper exposure, suggesting the mechanism of copper-induced olfactory impairment is through necrosis of the olfactory bulb and not copper-selective inhibition of olfactory receptors. Fully two-thirds of the differentially expressed genes at higher doses of copper have no known function and thus represent important candidates for further study of the responses to copper-induced olfactory injury. Our results shed light on the evolution of vertebrate olfactory repair mechanisms and have important implications for the conservation and management of both invasive and native populations of lamprey.


Subject(s)
Copper/toxicity , Olfactory Bulb/drug effects , Petromyzon/genetics , Transcriptome , Animals , Gene Expression Regulation , Olfactory Bulb/metabolism , Petromyzon/metabolism , Transcription, Genetic
7.
PLoS Biol ; 16(10): e2005512, 2018 10.
Article in English | MEDLINE | ID: mdl-30286079

ABSTRACT

Odor-guided behaviors, including homing, predator avoidance, or food and mate searching, are ubiquitous in animals. It is only recently that the neural substrate underlying olfactomotor behaviors in vertebrates was uncovered in lampreys. It consists of a neural pathway extending from the medial part of the olfactory bulb (medOB) to locomotor control centers in the brainstem via a single relay in the caudal diencephalon. This hardwired olfactomotor pathway is present throughout life and may be responsible for the olfactory-induced motor behaviors seen at all life stages. We investigated modulatory mechanisms acting on this pathway by conducting anatomical (tract tracing and immunohistochemistry) and physiological (intracellular recordings and calcium imaging) experiments on lamprey brain preparations. We show that the GABAergic circuitry of the olfactory bulb (OB) acts as a gatekeeper of this hardwired sensorimotor pathway. We also demonstrate the presence of a novel olfactomotor pathway that originates in the non-medOB and consists of a projection to the lateral pallium (LPal) that, in turn, projects to the caudal diencephalon and to the mesencephalic locomotor region (MLR). Our results indicate that olfactory inputs can induce behavioral responses by activating brain locomotor centers via two distinct pathways that are strongly modulated by GABA in the OB. The existence of segregated olfactory subsystems in lampreys suggests that the organization of the olfactory system in functional clusters may be a common ancestral trait of vertebrates.


Subject(s)
Lampreys/physiology , Olfactory Bulb/physiology , Smell/physiology , Animals , Brain/anatomy & histology , Brain/physiology , Diencephalon/anatomy & histology , Diencephalon/physiology , GABA Modulators/metabolism , Lampreys/anatomy & histology , Locomotion/physiology , Mesencephalon/physiology , Neural Pathways/physiology , Neurons/physiology , Odorants
8.
J Morphol ; 278(4): 464-474, 2017 04.
Article in English | MEDLINE | ID: mdl-28144979

ABSTRACT

The post-embryonic odor imprinting paradigm suggests Chinook salmon (Oncorhynchus tshawytscha) acquire memory to stream-specific amino acid olfactory odors prior to emergence as fry. Because effects of olfactory experience on development can be examined by mapping olfactory sensory neurons extending into distinct territories of glomerular neuropil in the olfactory bulb, glomerular patterning from early yolk-sac larva to fry was documented in wild salmonids, a temporal scale not yet thoroughly explored. Labeling olfactory sensory neurons with anti-keyhole limpet hemocyanin (anti-KLH) revealed seven spatially conserved glomerular territories visible at hatch and well established by the late yolk-sac larva developmental stage. Because of the responsiveness of microvillous olfactory sensory neurons to amino acids, corresponding glomeruli in the lateral bulbar region were mapped using anti-calretinin. The dorsolateral territory, distinct glomeruli of the lateral glomerular territory and the ventromedial glomeruli were immunoreactive to both KLH and calretinin. This study offers a morphological description of glomerular patterning in post-embryonic stages in wild Chinook salmon, a temporal window previously shown to be significant for olfactory imprinting. J. Morphol. 278:464-474, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
Olfactory Bulb/anatomy & histology , Olfactory Bulb/growth & development , Salmon/anatomy & histology , Salmon/growth & development , Animals , Calbindin 2/metabolism , Fluorescent Antibody Technique , Hemocyanins/immunology , Larva/metabolism , Yolk Sac/metabolism
9.
J Exp Biol ; 220(Pt 7): 1350-1359, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28183864

ABSTRACT

Olfactory sensory neurons innervate the olfactory bulb, where responses to different odorants generate a chemotopic map of increased neural activity within different bulbar regions. In this study, insight into the basal pattern of neural organization of the vertebrate olfactory bulb was gained by investigating the lamprey. Retrograde labelling established that lateral and dorsal bulbar territories receive the axons of sensory neurons broadly distributed in the main olfactory epithelium and that the medial region receives sensory neuron input only from neurons projecting from the accessory olfactory organ. The response duration for local field potential recordings was similar in the lateral and dorsal regions, and both were longer than medial responses. All three regions responded to amino acid odorants. The dorsal and medial regions, but not the lateral region, responded to steroids. These findings show evidence for olfactory streams in the sea lamprey olfactory bulb: the lateral region responds to amino acids from sensory input in the main olfactory epithelium, the dorsal region responds to steroids (taurocholic acid and pheromones) and to amino acids from sensory input in the main olfactory epithelium, and the medial bulbar region responds to amino acids and steroids stimulating the accessory olfactory organ. These findings indicate that olfactory subsystems are present at the base of vertebrate evolution and that regionality in the lamprey olfactory bulb has some aspects previously seen in other vertebrate species.


Subject(s)
Petromyzon/anatomy & histology , Petromyzon/physiology , Smell , Animals , Odorants/analysis , Olfactory Bulb/anatomy & histology , Olfactory Bulb/physiology , Olfactory Bulb/ultrastructure , Olfactory Receptor Neurons/cytology , Olfactory Receptor Neurons/metabolism , Olfactory Receptor Neurons/ultrastructure
10.
Front Neural Circuits ; 10: 18, 2016.
Article in English | MEDLINE | ID: mdl-27047342

ABSTRACT

Sensorimotor transformation is one of the most fundamental and ubiquitous functions of the central nervous system (CNS). Although the general organization of the locomotor neural circuitry is relatively well understood, less is known about its activation by sensory inputs and its modulation. Utilizing the lamprey model, a detailed understanding of sensorimotor integration in vertebrates is emerging. In this article, we explore how the vertebrate CNS integrates sensory signals to generate motor behavior by examining the pathways and neural mechanisms involved in the transformation of cutaneous and olfactory inputs into motor output in the lamprey. We then review how 5-hydroxytryptamine (5-HT) acts on these systems by modulating both sensory inputs and motor output. A comprehensive review of this fundamental topic should provide a useful framework in the fields of motor control, sensorimotor integration and neuromodulation.


Subject(s)
Locomotion/physiology , Sensory Receptor Cells/physiology , Spinal Cord/cytology , Animals , Lampreys , Locomotion/drug effects , Motor Neurons/drug effects , Nerve Net/drug effects , Nerve Net/physiology , Sensory Receptor Cells/drug effects , Serotonin/pharmacology
11.
Front Zool ; 12: 32, 2015.
Article in English | MEDLINE | ID: mdl-26609313

ABSTRACT

Chemical cues and pheromones guide decisions in organisms throughout the animal kingdom. The neurobiology, function, and evolution of olfaction are particularly well described in insects, and resulting concepts have driven novel approaches to pest control. However, aside from several exceptions, the olfactory biology of vertebrates remains poorly understood. One exception is the sea lamprey (Petromyzon marinus), which relies heavily upon olfaction during reproduction. Here, we provide a broad review of the chemical cues and pheromones used by the sea lamprey during reproduction, including overviews of the sea lamprey olfactory system, chemical cues and pheromones, and potential applications to population management. The critical role of olfaction in mediating the sea lamprey life cycle is evident by a well-developed olfactory system. Sea lamprey use chemical cues and pheromones to identify productive spawning habitat, coordinate spawning behaviors, and avoid risk. Manipulation of olfactory biology offers opportunities for management of populations in the Laurentian Great Lakes, where the sea lamprey is a destructive invader. We suggest that the sea lamprey is a broadly useful organism with which to study vertebrate olfaction because of its simple but well-developed olfactory organ, the dominant role of olfaction in guiding behaviors during reproduction, and the direct implications for vertebrate pest management.

12.
PLoS One ; 8(7): e69525, 2013.
Article in English | MEDLINE | ID: mdl-23922730

ABSTRACT

Although there is abundant evidence for segregated processing in the olfactory system across vertebrate taxa, the spatial relationship between the second order projection neurons (PNs) of olfactory subsystems connecting sensory input to higher brain structures is less clear. In the sea lamprey, there is tight coupling between olfaction and locomotion via PNs extending to the posterior tuberculum from the medial region of the olfactory bulb. This medial region receives peripheral input predominantly from the accessory olfactory organ. However, the axons from olfactory sensory neurons residing in the main olfactory epithelium extend to non-medial regions of the olfactory bulb, and the non-medial bulbar PNs extend their axons to the lateral pallium. It is not known if the receptive fields of the PNs in the two output pathways overlap; nor has the morphology of these PNs been investigated. In this study, retrograde labelling was utilized to investigate the PNs belonging to medial and non-medial projections. The dendrites and somata of the medial PNs were confined to medial glomerular neuropil, and dendrites of non-medial PNs did not enter this territory. The cell bodies and dendrites of the non-medial PNs were predominantly located below the glomeruli (frequently deeper in the olfactory bulb). While PNs in both locations contained single or multiple primary dendrites, the somal size was greater for medial than for non-medial PNs. When considered with the evidence-to-date, this study shows different neuroanatomical organization for medial olfactory bulb PNs extending to locomotor control centers and non-medial PNs extending to the lateral pallium in this vertebrate.


Subject(s)
Neurons/cytology , Olfactory Bulb/anatomy & histology , Olfactory Bulb/cytology , Olfactory Pathways/anatomy & histology , Olfactory Pathways/cytology , Petromyzon/anatomy & histology , Animals , Models, Biological
13.
Curr Opin Neurobiol ; 22(2): 223-30, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22054925

ABSTRACT

Chemical sensory signals play a crucial role in eliciting motor behaviors. We now review the different motor behaviors induced by chemosensory stimuli in fish as well as their neural substrate. A great deal of research has focused on migratory, reproductive, foraging, and escape behaviors but it is only recently that the molecules mediating these chemotactic responses have become well-characterized. Chemotactic responses are mediated by three sensory systems: olfactory, gustatory, and diffuse chemosensory. The olfactory sensory neuron responses to chemicals are now better understood. In addition, the olfactory projections to the central nervous system were recently shown to display an odotopic organization in the forebrain. Moreover, a specific downward projection underlying motor responses to olfactory inputs was recently described.


Subject(s)
Behavior, Animal/physiology , Chemotaxis/physiology , Fishes/physiology , Motor Activity/physiology , Animals , Chemoreceptor Cells/physiology , Neural Pathways/physiology
14.
Article in English | MEDLINE | ID: mdl-21735225

ABSTRACT

The wild perciform teleost Neogobius melanostomus (the round goby) originated from the Ponto-Caspian region and is now a highly successful invasive species in the Laurentian Great Lakes. Males may attract females into their nests for spawning by releasing reproductive pheromones, and it has been previously shown that reproductive males synthesize and release the 5ß-reduced and 3α-hydroxyl steroids 3α-hydroxy-5ß-androstane-11,17-dione (11-oxo-etiocholanolone; 11-O-ETIO) and 3α-hydroxy-5ß-androstane-11,17-dione 3-sulfate (11-oxo-etiocholanolone-3-sulfate; 11-O-ETIO-3-s) and 3α,17ß-dihydroxy-5ß-androstan-11-one 17-sulfate. In this study, we investigated properties of these released steroids by recording field potential responses from the olfactory epithelium (electro-olfactogram, EOG). The steroid 3α,17ß-dihydroxy-5ß-androstan-11-one 17-sulfate did not elicit olfactory responses while both 11-O-ETIO and 11-O-ETIO-3-s stimulated olfactory field potentials in the round goby, but not in the goldfish. Cross-adaptation analysis demonstrated that round gobies discriminated between11-O-ETIO and 11-O-ETIO-3-s (as well as etiocholanolone, ETIO) at the sensory level. Second messenger cascades depending on both cAMP and IP(3) were inferred for steroids from pharmacological inhibition studies, while the canonical teleost odors taurocholic acid (a bile acid) and L: -alanine (an amino acid) used only cAMP and IP(3), respectively. The round goby presents itself as an excellent species for the study of olfactory function of fish in the wild, given its possible use of these released steroids as pheromones.


Subject(s)
Goldfish/metabolism , Olfactory Mucosa/metabolism , Perciformes/metabolism , Sex Attractants/metabolism , Smell , Steroids/metabolism , Adenine/analogs & derivatives , Adenine/pharmacology , Adenylyl Cyclase Inhibitors , Adenylyl Cyclases/metabolism , Animals , Cyclic AMP/metabolism , Dihydrotestosterone/analogs & derivatives , Dihydrotestosterone/metabolism , Enzyme Inhibitors/pharmacology , Estrenes/pharmacology , Etiocholanolone/analogs & derivatives , Etiocholanolone/metabolism , Evoked Potentials , Female , Inositol 1,4,5-Trisphosphate/metabolism , Male , Olfactory Mucosa/drug effects , Pyrrolidinones/pharmacology , Reproduction , Second Messenger Systems , Smell/drug effects , Species Specificity , Type C Phospholipases/antagonists & inhibitors , Type C Phospholipases/metabolism
15.
Environ Toxicol Chem ; 30(9): 2046-54, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21647945

ABSTRACT

Fish live in waters of contaminant flux. In three urban, fish-bearing waterways of British Columbia, Canada, we found the active ingredients of WeedEx, KillEx, and Roundup herbicide formulations (2,4-D, dicamba, glyphosate, and mecoprop) at low to high ng/L concentrations (0.26 to 309 ng/L) in routine conditions, i.e., no rain for at least one week. Following rain, these concentrations increased by an average of eightfold, suggesting runoff as a major route of herbicide introduction in these waterways. To determine whether fish might be able to limit point-source exposures through sensory-driven behaviors, we introduced pulses of representative herbicide mixtures to individual adult zebrafish (a model species) in flow-through tanks. Fish did the opposite of limit exposure; they chose to spend more time in pulses of herbicide mixtures representative of those that may occur with rain events. This attraction response was not altered by a previous 4-d exposure to lower concentrations of the mixtures, suggesting fish will not learn from previous exposures. However, previous exposures did alter an attraction response to an amino acid prevalent in food (L-alanine). The present study demonstrates that fish living within urban waterways may elect to place themselves in herbicide-contaminated environments and that these exposures may alter their behavioral responses to cues necessary for survival.


Subject(s)
Behavior, Animal/drug effects , Herbicides/toxicity , Water Pollutants, Chemical/toxicity , 2,4-Dichlorophenoxyacetic Acid/analysis , 2,4-Dichlorophenoxyacetic Acid/toxicity , 2-Methyl-4-chlorophenoxyacetic Acid/analogs & derivatives , 2-Methyl-4-chlorophenoxyacetic Acid/analysis , 2-Methyl-4-chlorophenoxyacetic Acid/toxicity , Animals , British Columbia , Cities , Dicamba/analysis , Dicamba/toxicity , Dose-Response Relationship, Drug , Environment , Environmental Monitoring , Female , Glycine/analogs & derivatives , Glycine/analysis , Glycine/toxicity , Herbicides/analysis , Male , Models, Animal , Rain , Water Pollutants, Chemical/analysis , Zebrafish , Glyphosate
16.
J Chem Ecol ; 37(3): 260-2, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21365215

ABSTRACT

The round goby, Neogobius melanostomus, is a highly successful invasive species in the Laurentian Great Lakes. Previous behavioral studies implied that females are attracted by pheromones to the nests of reproductive males, and that males release putative steroidal pheromones--unconjugated as well as conjugated forms of 3α-hydroxy-5ß-androstane-11,17-dione (11-O-ETIO)-following stimulation of the hypothalamic--gonadal axis with salmon gonadotropin releasing hormone analog (sGnRHa). In this study, we tested the olfactory system of females in response to extracts containing these released steroids. We compared electrical field potential responses from the olfactory epithelium (electro-olfactogram, EOG) of non-reproductive females to methanol extracts of water that previously held males, collected before and after injection of the males with sGnRHa or saline. The females showed increased EOG responses to the post-injection extracts when males were treated with sGnRHa but not saline. This finding provides further evidence for interactions between male and female N. melanostomus via steroidal reproductive pheromones.


Subject(s)
Etiocholanolone/analogs & derivatives , Perciformes/physiology , Reproduction/physiology , Smell , Animals , Electrophysiology/methods , Etiocholanolone/analysis , Etiocholanolone/metabolism , Female , Gonadotropin-Releasing Hormone/administration & dosage , Gonadotropin-Releasing Hormone/analogs & derivatives , Male , Olfactory Pathways/physiology , Sexual Behavior, Animal
17.
Biol Reprod ; 84(2): 288-98, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20944082

ABSTRACT

Previous studies of the round goby (Neogobius melanostomus Pallas, 1814), an invasive fish species in the Laurentian Great Lakes of North America, have shown that this species has the ability to both synthesize and smell steroids that have a 5 beta-reduced and 3 alpha-hydroxyl (5 beta,3 alpha) configuration. An enzyme-linked immunoassay (EIA) for 3 alpha-hydroxy-5 beta-androstane-11,17-dione (11-O-ETIO) has been used to show a substantial rise in the rate of release of immunoreactive compounds into the water when males are injected with salmon gonadotropin releasing hormone analogue. Similar increases were noted for 11-ketotestosterone and 17,20 beta-dihydroxypregn-4-en-3-one. Partitioning of the extracts between diethyl ether and water showed the presence of both free and conjugated immunoreactive 11-O-ETIO. Only conjugated immunoreactivity was found in urine (implying that free steroid is released via the gills). The identity of the conjugates was probed by using HPLC, EIA, and mass spectrometry and removal of sulfate and glucosiduronate groups. Immunoreactivity in the conjugated fraction was found to be due mainly to 3 alpha,17beta-dihydroxy-5 beta-androstan-11-one 17-sulfate. However, the evidence was also strong for the presence in water extracts of substantial amounts of 3 alpha-hydroxy-5 beta-androstane-11,17-dione 3-glucosiduronate (which could be detected only by EIA after removal of the glucosiduronate group with beta-glucuronidase). There were also small amounts of 3 alpha-hydroxy-5 beta-androstane-11,17-dione 3-sulfate and 3 alpha,17beta-dihydroxy-5 beta-androstan-11-one 17-glucosiduronate. These studies give some idea of the types, amounts, and ratios of 11-O-ETIO derivatives that are released by reproductive N. melanostomus and will aid further research into the putative pheromonal roles of 5 beta,3 alpha-reduced androgens in this species.


Subject(s)
Etiocholanolone/analogs & derivatives , Perciformes/physiology , Pheromones/metabolism , Reproduction/physiology , Animals , Chemical Fractionation/methods , Chromatography, High Pressure Liquid , Etiocholanolone/analysis , Etiocholanolone/chemistry , Gonadotropin-Releasing Hormone/administration & dosage , Gonadotropin-Releasing Hormone/analogs & derivatives , Hydroxyprogesterones/analysis , Immunoenzyme Techniques , Injections , Male , Mass Spectrometry , Salmon , Saponins/analysis , Testosterone/analogs & derivatives , Testosterone/analysis , Testosterone/urine , Water/chemistry
18.
PLoS Biol ; 8(12): e1000567, 2010 Dec 21.
Article in English | MEDLINE | ID: mdl-21203583

ABSTRACT

It is widely recognized that animals respond to odors by generating or modulating specific motor behaviors. These reactions are important for daily activities, reproduction, and survival. In the sea lamprey, mating occurs after ovulated females are attracted to spawning sites by male sex pheromones. The ubiquity and reliability of olfactory-motor behavioral responses in vertebrates suggest tight coupling between the olfactory system and brain areas controlling movements. However, the circuitry and the underlying cellular neural mechanisms remain largely unknown. Using lamprey brain preparations, and electrophysiology, calcium imaging, and tract tracing experiments, we describe the neural substrate responsible for transforming an olfactory input into a locomotor output. We found that olfactory stimulation with naturally occurring odors and pheromones induced large excitatory responses in reticulospinal cells, the command neurons for locomotion. We have also identified the anatomy and physiology of this circuit. The olfactory input was relayed in the medial part of the olfactory bulb, in the posterior tuberculum, in the mesencephalic locomotor region, to finally reach reticulospinal cells in the hindbrain. Activation of this olfactory-motor pathway generated rhythmic ventral root discharges and swimming movements. Our study bridges the gap between behavior and cellular neural mechanisms in vertebrates, identifying a specific subsystem within the CNS, dedicated to producing motor responses to olfactory inputs.


Subject(s)
Motor Activity/physiology , Olfactory Pathways/anatomy & histology , Olfactory Pathways/physiology , Petromyzon/anatomy & histology , Petromyzon/physiology , Pheromones/physiology , Reticular Formation/anatomy & histology , Animals , Brain/anatomy & histology , Brain/physiology , Female , Male , Neurons/cytology , Neurons/physiology , Odorants , Olfactory Bulb/anatomy & histology , Olfactory Bulb/physiology , Reticular Formation/physiology , Smell , Spinal Cord/anatomy & histology , Spinal Cord/physiology
19.
J Comp Neurol ; 516(2): 105-16, 2009 Sep 10.
Article in English | MEDLINE | ID: mdl-19575448

ABSTRACT

Although four different primary olfactory pathways have been described in tetrapod vertebrates, polymorphic olfactory sensory neurons comingle in the olfactory epithelium and project axons into separate bulbar regions in teleost fish. However, spatially segregated neurons may exist in the peripheral olfactory organ of lampreys, extant representatives of ancestral jawless vertebrates. In lampreys, the caudoventral portion of the peripheral olfactory organ contains tubular diverticula, named the accessory olfactory organ (AOO). Short, ciliated AOO cells were retrogradely labelled following application of biocytin or carbocyanine dyes to the medial region of the olfactory bulb. Tracer application to eight radial locations within the layer of glomeruli with mitral cells, of the olfactory bulb, showed that AOO projections were restricted to the medial region of the olfactory bulb. The outer boundary of the AOO projection extended to the ventromedial region of glomerular neuropil in 43% of the specimens. The olfactory sensory neurons in the main olfactory epithelium projected to glomerular neuropil throughout the olfactory bulb, including sparse projections to the medial region of the olfactory bulb. This study shows that these AOO neurons and their projections in the medial region of the olfactory bulb are anatomically distinct regions of the primary olfactory pathway in the sea lamprey.


Subject(s)
Olfactory Bulb/anatomy & histology , Olfactory Pathways/anatomy & histology , Petromyzon/anatomy & histology , Animals , Immunohistochemistry , Microscopy, Confocal , Microscopy, Fluorescence , Neurons/cytology , Olfactory Bulb/cytology , Olfactory Mucosa/anatomy & histology , Olfactory Mucosa/cytology , Olfactory Pathways/cytology , Sensory Receptor Cells/cytology
20.
Brain Res Rev ; 57(1): 172-82, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17916380

ABSTRACT

The spinal circuitry underlying the generation of basic locomotor synergies has been described in substantial detail in lampreys and the cellular mechanisms have been identified. The initiation of locomotion, on the other hand, relies on supraspinal networks and the cellular mechanisms involved are only beginning to be understood. This review examines some of the findings relative to the neural mechanisms involved in the initiation of locomotion of lampreys. Locomotion can be elicited by sensory stimulation or by internal cues associated with fundamental needs of the animal such as food seeking, exploration, and mating. We have described mechanisms by which escape swimming is elicited in lampreys in response to mechanical skin stimulation. A rather simple neural connectivity is involved, including sensory and relay neurons, as well as the brainstem rhombencephalic reticulospinal cells, which act as command neurons. We have shown that reticulospinal cells have intrinsic membrane properties that allow them to transform a short duration sensory input into a long-lasting excitatory command that activates the spinal locomotor networks. These mechanisms constitute an important feature for the activation of escape swimming. Other sensory inputs can also elicit locomotion in lampreys. For instance, we have recently shown that olfactory signals evoke sustained depolarizations in reticulospinal neurons and chemical activation of the olfactory bulbs with local injections of glutamate induces fictive locomotion. The mechanisms by which internal cues initiate locomotion are less understood. Our research has focused on one particular locomotor center in the brainstem, the mesencephalic locomotor region (MLR). The MLR is believed to channel inputs from many brain regions to generate goal-directed locomotion. It activates reticulospinal cells to elicit locomotor output in a graded fashion contrary to escape locomotor bouts, which are all-or-none. MLR inputs to reticulospinal cells use both glutamatergic and cholinergic transmission; nicotinic receptors on reticulospinal cells are involved. MLR excitatory inputs to reticulospinal cells in the middle (MRRN) are larger than those in the posterior rhombencephalic reticular nucleus (PRRN). Moreover at low stimulation strength, reticulospinal cells in the MRRN are activated first, whereas those in the PRRN require stronger stimulation strengths. The output from the MLR on one side activates reticulospinal neurons on both sides in a highly symmetrical fashion. This could account for the symmetrical bilateral locomotor output evoked during unilateral stimulation of the MLR in all animal species tested to date. Interestingly, muscarinic receptor activation reduces sensory inputs to reticulospinal neurons and, under natural conditions, the activation of MLR cholinergic neurons will likely reduce sensory inflow. Moreover, exposing the brainstem to muscarinic agonists generates sustained recurring depolarizations in reticulospinal neurons through pre-reticular effects. Cells in the caudal half of the rhombencephalon appear to be involved and we propose that the activation of these muscarinoceptive cells could provide additional excitation to reticulospinal cells when the MLR is activated under natural conditions. One important question relates to sources of inputs to the MLR. We found that substance P excites the MLR, whereas GABA inputs tonically maintain the MLR inhibited and removal of this inhibition initiates locomotion. Other locomotor centers exist such as a region in the ventral thalamus projecting directly to reticulospinal cells. This region, referred to as the diencephalic locomotor region, receives inputs from several areas in the forebrain and is likely important for goal-directed locomotion. In summary, this review focuses on the most recent findings relative to initiation of lamprey locomotion in response to sensory and internal cues in lampreys.


Subject(s)
Lampreys/physiology , Locomotion/physiology , Animals , Brain/anatomy & histology , Brain/physiology , Nervous System Physiological Phenomena , Neural Pathways/cytology , Neural Pathways/physiology , Neurons/physiology , Sensation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...