Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 8(12)2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33371386

ABSTRACT

Microbial strains are being engineered for an increasingly diverse array of applications, from chemical production to human health. While traditional engineering disciplines are driven by predictive design tools, these tools have been difficult to build for biological design due to the complexity of biological systems and many unknowns of their quantitative behavior. However, due to many recent advances, the gap between design in biology and other engineering fields is closing. In this work, we discuss promising areas of development of computational tools for engineering microbial strains. We define five frontiers of active research: (1) Constraint-based modeling and metabolic network reconstruction, (2) Kinetics and thermodynamic modeling, (3) Protein structure analysis, (4) Genome sequence analysis, and (5) Regulatory network analysis. Experimental and machine learning drivers have enabled these methods to improve by leaps and bounds in both scope and accuracy. Modern strain design projects will require these tools to be comprehensively applied to the entire cell and efficiently integrated within a single workflow. We expect that these frontiers, enabled by the ongoing revolution of big data science, will drive forward more advanced and powerful strain engineering strategies.

2.
Front Mol Biosci ; 7: 591406, 2020.
Article in English | MEDLINE | ID: mdl-33324679

ABSTRACT

The availability of genome sequences, annotations, and knowledge of the biochemistry underlying metabolic transformations has led to the generation of metabolic network reconstructions for a wide range of organisms in bacteria, archaea, and eukaryotes. When modeled using mathematical representations, a reconstruction can simulate underlying genotype-phenotype relationships. Accordingly, genome-scale metabolic models (GEMs) can be used to predict the response of organisms to genetic and environmental variations. A bottom-up reconstruction procedure typically starts by generating a draft model from existing annotation data on a target organism. For model species, this part of the process can be straightforward, due to the abundant organism-specific biochemical data. However, the process becomes complicated for non-model less-annotated species. In this paper, we present a draft liver reconstruction, ReCodLiver0.9, of Atlantic cod (Gadus morhua), a non-model teleost fish, as a practicable guide for cases with comparably few resources. Although the reconstruction is considered a draft version, we show that it already has utility in elucidating metabolic response mechanisms to environmental toxicants by mapping gene expression data of exposure experiments to the resulting model.

SELECTION OF CITATIONS
SEARCH DETAIL
...