Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Transplant Direct ; 6(11): e615, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33134491

ABSTRACT

BACKGROUND: Endomyocardial biopsy remains the gold standard for distinguishing types of immunologic injury-acute versus antibody-mediated rejection (AMR). Exosomes are tissue-specific extracellular microvesicles released by many cell types, including transplanted heart. Circulating transplant heart exosomes express donor-specific human leukocyte antigen (HLA) I molecules. As AMR is mediated by antibodies to donor HLAs, we proposed that complement deposition that occurs with AMR at tissue level would also occur on circulating donor heart exosomes. METHODS: Plasma exosomes in 4 patients were isolated by column chromatography and ultracentrifugation. Donor heart exosomes were purified using anti-donor HLA I antibody beads and complement C4d protein expression was assessed in this subset as marker for AMR. RESULTS: Three patients had no rejection episodes. Circulating donor heart exosomes showed troponin protein and mRNA expression at all follow-up time points. One patient developed AMR on day 14 endomyocardial biopsy that was treated with rituximab, IVIG/plasmapheresis. Time-specific detection of C4d protein was seen in donor heart exosome subset in this patient, which resolved with treatment. C4d was not seen in other 3 patients' donor exosomes. CONCLUSIONS: Anti-donor HLA I specificity enables characterization of circulating donor heart exosomes in the clinical setting. Further characterization may open the window to noninvasively diagnose rejection type, such as AMR.

2.
Sci Rep ; 10(1): 6398, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32286341

ABSTRACT

Preeclampsia is the most common placental pathology in pregnant females, with increased morbidity and mortality incurred on the mother and the fetus. There is a need for improved biomarkers for diagnosis and monitoring of this condition. Placental syncytiotrophoblasts at the maternal-fetal interface release nanoparticles, including extracellular microvesicles, into the maternal blood during pregnancy. Syncytiotrophoblast extracellular microvesicles (STEVs) are being studied for their diagnostic potential and for their potential physiologic role in preeclampsia. We hypothesized that STEV profiles in maternal circulation would be altered under conditions of preeclampsia compared to normal pregnancy. Extracellular vesicles (EVs) released by BeWo cells in vitro showed high expression of syncytin-1, but no plac1 expression, demonstrating that trophoblast cell EVs express syncytin-1 on their surface. Placental alkaline phosphatase also showed high expression on BeWo EVs, but due to concern for cross reactivity to highly prevalent isoforms of intestinal and bone alkaline phosphatase, we utilized syncytin-1 as a marker for STEVs. In vivo, syncytin-1 protein expression was confirmed in maternal plasma EVs from Control and Preeclampsia subjects by Western blot, and overall, lower expression was noted in samples from patients with preeclampsia (n = 8). By nanoparticle analysis, EV profiles from Control and Preeclampsia groups showed similar total plasma EV quantities (p = 0.313) and size distribution (p = 0.415), but STEV quantitative signal, marked by syncytin-1 specific EVs, was significantly decreased in the Preeclampsia group (p = 2.8 × 10-11). Receiver operating characteristic curve demonstrated that STEV signal threshold cut-off of <0.316 was 95.2% sensitive and 95.6% specific for diagnosis of preeclampsia in this cohort (area under curve = 0.975 ± 0.020). In conclusion, we report that the syncytin-1 expressing EV profiles in maternal plasma might serve as a placental tissue specific biomarker for preeclampsia.


Subject(s)
Blood Circulation/physiology , Cell-Derived Microparticles/metabolism , Pre-Eclampsia/blood , Pre-Eclampsia/diagnosis , Trophoblasts/metabolism , Adult , Biomarkers/metabolism , Case-Control Studies , Cell Line , Cell-Derived Microparticles/ultrastructure , Exosomes/metabolism , Exosomes/ultrastructure , Female , Gene Products, env/metabolism , Humans , Organ Specificity , Placenta/metabolism , Pregnancy , Pregnancy Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...