Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 12166, 2019 08 21.
Article in English | MEDLINE | ID: mdl-31434907

ABSTRACT

Novel magnetic sensing modalities using quantum sensors or nanoscale probes have drastically improved the sensitivity and hence spatial resolution of nuclear magnetic resonance imaging (MRI) down to the nanoscale. Recent demonstrations of nuclear magnetic resonance (NMR) with paramagnetic colour centres include single molecule sensitivity, and sub-part-per-million spectral resolution. Mostly, these results have been obtained using well-characterised single sensors, which only permit extended imaging by scanning-probe microscopy. Here, we enhance multiplexed MRI with a thin layer of ensemble spin sensors in an inhomogeneous control field by optimal control spin manipulation to improve ensemble sensitivity and field of view (FOV). We demonstrate MRI of fluorine in patterned thin films only 1.2 nm in thickness, corresponding to a net moment of 120 nuclear spins per sensor spin. With the aid of the NMR signal, we reconstruct the nanoscale depth distribution of the sensor spins within the substrate. In addition, we exploit inhomogeneous ensemble control to squeeze the point spread function of the imager to about 100 nm and show that localisation of a point-like NMR signal within 40 nm is feasible. These results pave the way to quantitive NMR ensemble sensing and magnetic resonance microscopy with a resolution of few ten nanometers.

2.
Nat Commun ; 4: 1607, 2013.
Article in English | MEDLINE | ID: mdl-23511472

ABSTRACT

The detection of small numbers of magnetic spins is a significant challenge in the life, physical and chemical sciences, especially when room temperature operation is required. Here we show that a proximal nitrogen-vacancy spin ensemble serves as a high precision sensing and imaging array. Monitoring its longitudinal relaxation enables sensing of freely diffusing, unperturbed magnetic ions and molecules in a microfluidic device without applying external magnetic fields. Multiplexed charge-coupled device acquisition and an optimized detection scheme permits direct spin noise imaging of magnetically labelled cellular structures under ambient conditions. Within 20 s we achieve spatial resolutions below 500 nm and experimental sensitivities down to 1,000 statistically polarized spins, of which only 32 ions contribute to a net magnetization. The results mark a major step towards versatile sub-cellular magnetic imaging and real-time spin sensing under physiological conditions providing a minimally invasive tool to monitor ion channels or haemoglobin trafficking inside live cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...