Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Genet Genomics ; 273(4): 311-8, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15815918

ABSTRACT

Several Arabidopsis mutants of the ecotype Dijon were isolated that show resistance to the herbicide acifluorfen, which inactivates protoporphyrinogen oxidase (PPOX), an enzyme of tetrapyrrole biosynthesis. This enzyme provides protoporphyrin for both Mg chelatase and ferrochelatase at the branchpoint, which leads to chlorophyll and heme, respectively. One of the mutations, aci5-3, displays semidominant inheritance. Heterozygous progeny showed yellow-green leaves, while the homozygous seedlings were white and inviable, but could be rescued by supplementing the medium with sugar. Interestingly, the expression of neither of the two forms of PPOX was altered in the mutant, but the rate of synthesis of 5-aminolevulinate, the precursor of all tetrapyrroles, was drastically reduced. Genetic mapping revealed the mutant locus is closely linked to the ch42 marker, which is itself located in the CHLI-1 gene which codes for one of the three subunits of Mg chelatase. The cs mutant also shows a defect in this gene, and test for allelism with aci5-3 confirmed that the two mutations are allelic. Sequencing of the wild type and aci5-3 alleles of CHLI-1 revealed a single base change (G718A), which results in a D240N substitution in the CHLI-1 protein. In the homozygous aci5-3 mutant no CHLI-1 RNA or protein could be detected. Strikingly, CHLH and CHLI-2 transcripts were also absent. This indicates the existence of a feedback-regulatory mechanism that inactivates the genes encoding certain Mg chelatase subunits. The basis for the semidominant inheritance pattern and the relationship between herbicide resistance and modified gene expression is discussed.


Subject(s)
Arabidopsis/genetics , Drug Resistance/genetics , Gene Expression Regulation, Plant , Lyases/genetics , Protein Subunits/genetics , Tetrapyrroles/biosynthesis , Aminolevulinic Acid/metabolism , Arabidopsis/enzymology , Base Sequence , Blotting, Northern , Blotting, Western , Chromosome Mapping , DNA Primers , Herbicides/toxicity , Inheritance Patterns/genetics , Lyases/metabolism , Molecular Sequence Data , Mutation/genetics , Nitrobenzoates/toxicity , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Pigmentation/genetics , Protein Subunits/metabolism , Protoporphyrinogen Oxidase , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA
2.
Plant J ; 35(4): 512-22, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12904213

ABSTRACT

The barley line albostrians exhibits a severe block in chloroplast development as a result of a mutationally induced lack of plastid ribosomes. White leaves of this mutant contain undifferentiated plastids, possess only traces of chlorophyll (Chl), and are photosynthetically inactive. Chl deficiency, combined with a continuous heme requirement, should lead to drastic changes in the tetrapyrrole metabolism in white versus green leaves. We analyzed the extent to which the synthesis rate of the pathway and the porphyrin distribution toward the Chl- and heme-synthesizing bifurcation is altered in the white tissue of albostrians. Expression and activity of several distinctively regulated enzymes, such as glutamyl-tRNAglu reductase, glutamate 1-semialdehyde aminotransferase, Mg- and Fe-chelatase, and Chl synthetase, were altered in white mutant leaves in comparison to control leaves. A drastic loss in the rate-limiting formation of 5-aminolevulinate and in the Mg-chelatase and Mg-protoporphyrin IX methyltransferase activity, as well as an increase in Fe-chelatase activity, accounts for a decrease in the metabolic flux and the re-direction of metabolites. It is proposed that the tightly balanced control of activities in the pathway functions by different metabolic feedback loops and in response to developmental state and physiological requirements. This data supports the idea that the initial steps of Mg-porphyrin synthesis contribute to plastid-derived signaling toward the nucleus. The barley mutant albostrians proved to be a valuable system for studying regulation of tetrapyrrole biosynthesis and their involvement in the bi-directional communication between plastids and nucleus.


Subject(s)
Hordeum/metabolism , Porphyrins/metabolism , Pyrroles/metabolism , Carotenoids/metabolism , Chlorophyll/metabolism , Heme/metabolism , Hordeum/enzymology , Hordeum/genetics , Lyases/metabolism , Mutation , Plant Proteins/metabolism , Tetrapyrroles , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...