Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Metab Eng ; 67: 75-87, 2021 09.
Article in English | MEDLINE | ID: mdl-34098100

ABSTRACT

In large-scale bioprocesses microbes are exposed to heterogeneous substrate availability reducing the overall process performance. A series of deletion strains was constructed from E. coli MG1655 aiming for a robust phenotype in heterogeneous fermentations with transient starvation. Deletion targets were hand-picked based on a list of genes derived from previous large-scale simulation runs. Each gene deletion was conducted on the premise of strict neutrality towards growth parameters in glucose minimal medium. The final strain of the series, named E. coli RM214, was cultivated continuously in an STR-PFR (stirred tank reactor - plug flow reactor) scale-down reactor. The scale-down reactor system simulated repeated passages through a glucose starvation zone. When exposed to nutrient gradients, E. coli RM214 had a significantly lower maintenance coefficient than E. coli MG1655 (Δms = 0.038 gGlucose/gCDW/h, p < 0.05). In an exemplary protein production scenario E. coli RM214 remained significantly more productive than E. coli MG1655 reaching 44% higher eGFP yield after 28 h of STR-PFR cultivation. This study developed E. coli RM214 as a robust chassis strain and demonstrated the feasibility of engineering microbial hosts for large-scale applications.


Subject(s)
Bioreactors , Escherichia coli , Culture Media , Escherichia coli/genetics , Fermentation , Glucose
2.
Biotechnol Bioeng ; 118(1): 265-278, 2021 01.
Article in English | MEDLINE | ID: mdl-32940924

ABSTRACT

Escherichia coli exposed to industrial-scale heterogeneous mixing conditions respond to external stress by initiating short-term metabolic and long-term strategic transcriptional programs. In native habitats, long-term strategies allow survival in severe stress but are of limited use in large bioreactors, where microenvironmental conditions may change right after said programs are started. Related on/off switching of genes causes additional ATP burden that may reduce the cellular capacity for producing the desired product. Here, we present an agent-based data-driven model linked to computational fluid dynamics, finally allowing to predict additional ATP needs of Escherichia coli K12 W3110 exposed to realistic large-scale bioreactor conditions. The complex model describes transcriptional up- and downregulation dynamics of about 600 genes starting from subminute range covering 28 h. The data-based approach was extracted from comprehensive scale-down experiments. Simulating mixing and mass transfer conditions in a 54 m3 stirred bioreactor, 120,000 E. coli cells were tracked while fluctuating between different zones of glucose availability. It was found that cellular ATP demands rise between 30% and 45% of growth decoupled maintenance needs, which may limit the production of ATP-intensive product formation accordingly. Furthermore, spatial analysis of individual cell transcriptional patterns reveal very heterogeneous gene amplifications with hot spots of 50%-80% messenger RNA upregulation in the upper region of the bioreactor. The phenomenon reflects the time-delayed regulatory response of the cells that propagate through the stirred tank. After 4.2 h, cells adapt to environmental changes but still have to bear an additional 6% ATP demand.


Subject(s)
Adenosine Triphosphate/metabolism , Bioreactors , Computer Simulation , Escherichia coli/growth & development , Models, Biological
3.
Adv Biochem Eng Biotechnol ; 177: 229-254, 2021.
Article in English | MEDLINE | ID: mdl-32978650

ABSTRACT

Eulerian-Lagrangian approach to investigate cellular responses in a bioreactor has become the center of attention in recent years. It was introduced to biotechnological processes about two decades ago, but within the last few years, it proved itself as a powerful tool to address scale-up and -down topics of bioprocesses. It can capture the history of a cell and reveal invaluable information for, not only, bioprocess control and design but also strain engineering. This way it will be possible to shed light on the actual environment that cell experiences throughout its lifespan. Lifelines of a microorganism in a bioreactor can serve as the missing link that encompasses the biological timescales and the physical timescales. For this purpose digitalization of bioreactors provides us with new insights that are not achievable in industrial reactors easily if at all, namely, substrate and product gradients; high-shear regions are among the most interesting factors that can be reproduced adequately with help of a digital twin. In this chapter basic principles of this method will be introduced, and later on some practical aspects of particle tracking technique will be illustrated. In the final section, some of the advantages and challenges associated with this method will be discussed.


Subject(s)
Bioreactors
4.
Microb Biotechnol ; 14(3): 993-1010, 2021 05.
Article in English | MEDLINE | ID: mdl-33369128

ABSTRACT

In large-scale fed-batch production processes, microbes are exposed to heterogeneous substrate availability caused by long mixing times. Escherichia coli, the most common industrial host for recombinant protein production, reacts by recurring accumulation of the alarmone ppGpp and energetically wasteful transcriptional strategies. Here, we compare the regulatory responses of the stringent response mutant strain E. coli SR and its parent strain E. coli MG1655 to repeated nutrient starvation in a two-compartment scale-down reactor. Our data show that E. coli SR can withstand these stress conditions without a ppGpp-mediated stress response maintaining fully functional ammonium uptake and biomass formation. Furthermore, E. coli SR exhibited a substantially reduced short-term transcriptional response compared to E. coli MG1655 (less than half as many differentially expressed genes). E. coli SR proceeded adaptation via more general SOS response pathways by initiating negative regulation of transcription, translation and cell division. Our results show that locally induced stress responses propagating through the bioreactor do not result in cyclical induction and repression of genes in E. coli SR, but in a reduced and coordinated response, which makes it potentially suitable for large-scale production processes.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Adaptation, Physiological , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial , Guanosine Tetraphosphate
5.
FEBS Open Bio ; 10(12): 2791-2804, 2020 12.
Article in English | MEDLINE | ID: mdl-33128321

ABSTRACT

A major goal for process and cell engineering in the biopharmaceutical industry is enhancing production through increasing volumetric and cell-specific productivities (CSP). Here, we present 5'-deoxy-5'-(methylthio)adenosine (MTA), the degradation product of S-(5'-adenosyl)-L-methionine (SAM), as a highly attractive native additive which can boost CSP by 79% when added to exponentially growing cells at a concentration of 250-300 µm. Notably, cell viability and cell size remain higher than in non-treated cultures. In addition, cell cycle arrests first in S-, then in G2-phase before levelling out compared to non-treated cultivations. Intensive differential gene analysis reveals that expression of genes for cytoskeleton mediated proteins and vesicle transport is amplified by treatment. Furthermore, the interaction of MTA with cell proliferation additionally stimulated recombinant protein formation. The results may serve as a promising starting point for further developments in process and cell engineering to boost productivity.


Subject(s)
Deoxyadenosines/pharmacology , Thionucleosides/pharmacology , Animals , CHO Cells , Cell Cycle Checkpoints/drug effects , Cell Cycle Checkpoints/genetics , Cell Engineering , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cells, Cultured , Cricetulus , Recombinant Proteins/biosynthesis
6.
Front Microbiol ; 9: 2058, 2018.
Article in English | MEDLINE | ID: mdl-30210489

ABSTRACT

To ensure economic competitiveness, bioprocesses should achieve maximum productivities enabled by high growth rates (µ) and equally high substrate consumption rates (qS) as a prerequisite of sufficient carbon-to-product conversion. Both traits were investigated and improved via bioprocess engineering approaches studying the industrial work horse Corynebacterium glutamicum. Standard minimal medium CGXII with glucose as sole carbon source was supplemented with complex brain-heart-infusion (BHI) or amino acid (AA) cocktails. Maximum µ of 0.67 h-1 was exclusively observed in 37 g BHI L-1 whereas only minor growth stimulation was found after AA supplementation (µ = 0.468 h-1). Increasing glucose consumption rates (qGlc) were solely observed in certain dosages of BHI (1-10 g L-1), while 37 g BHI L-1 and AA addition revealed qGlc below the reference experiments. Moreover, BHI supplementation revealed Monod-type saturation kinetics of µ (KBHI = 2.73 g BHI L-1) referring to the preference of non-AAs as key boosting nutrients. ATP-demands under reference, 1 g BHI L-1, and AA conditions were nearly constant but halved in BHI concentrations above 5 g L-1 reflecting the energetic advantage of consuming complex nutrient components in addition to "simple" building blocks such as AAs. Furthermore, C. glutamicum revealed maximum biomass per carbon yields of about 18 gCDW C-mol-1 irrespective of the medium. In AA supplementation experiments, simultaneous uptake of 17 AAs was observed, maximum individual consumption rates determined, and L-asparagine and L-glutamine were distinguished as compounds with the highest consumption rates. Employment of the expanded stoichiometric model iMG481 successfully reproduced experimental results and revealed the importance of C. glutamicum's transaminase network to compensate needs of limiting AA supply. Model-based sensitivity studies attributed the highest impact on µ to AAs with high ATP and NADPH demands such as L-tryptophan or L-phenylalanine.

7.
Comput Struct Biotechnol J ; 16: 246-256, 2018.
Article in English | MEDLINE | ID: mdl-30105090

ABSTRACT

Industrial bioreactors range from 10.000 to 700.000 L and characteristically show different zones of substrate availabilities, dissolved gas concentrations and pH values reflecting physical, technical and economic constraints of scale-up. Microbial producers are fluctuating inside the bioreactors thereby experiencing frequently changing micro-environmental conditions. The external stimuli induce responses on microbial metabolism and on transcriptional regulation programs. Both may deteriorate the expected microbial production performance in large scale compared to expectations deduced from ideal, well-mixed lab-scale conditions. Accordingly, predictive tools are needed to quantify large-scale impacts considering bioreactor heterogeneities. The review shows that the time is right to combine simulations of microbial kinetics with calculations of large-scale environmental conditions to predict the bioreactor performance. Accordingly, basic experimental procedures and computational tools are presented to derive proper microbial models and hydrodynamic conditions, and to link both for bioreactor modeling. Particular emphasis is laid on the identification of gene regulatory networks as the implementation of such models will surely gain momentum in future studies.

SELECTION OF CITATIONS
SEARCH DETAIL