Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Circ Res ; 127(6): 811-823, 2020 08 28.
Article in English | MEDLINE | ID: mdl-32546048

ABSTRACT

RATIONALE: Arterial inflammation manifested as atherosclerosis is the leading cause of mortality worldwide. Genome-wide association studies have identified a prominent role of HDAC (histone deacetylase)-9 in atherosclerosis and its clinical complications including stroke and myocardial infarction. OBJECTIVE: To determine the mechanisms linking HDAC9 to these vascular pathologies and explore its therapeutic potential for atheroprotection. METHODS AND RESULTS: We studied the effects of Hdac9 on features of plaque vulnerability using bone marrow reconstitution experiments and pharmacological targeting with a small molecule inhibitor in hyperlipidemic mice. We further used 2-photon and intravital microscopy to study endothelial activation and leukocyte-endothelial interactions. We show that hematopoietic Hdac9 deficiency reduces lesional macrophage content while increasing fibrous cap thickness thus conferring plaque stability. We demonstrate that HDAC9 binds to IKK (inhibitory kappa B kinase)-α and ß, resulting in their deacetylation and subsequent activation, which drives inflammatory responses in both macrophages and endothelial cells. Pharmacological inhibition of HDAC9 with the class IIa HDAC inhibitor TMP195 attenuates lesion formation by reducing endothelial activation and leukocyte recruitment along with limiting proinflammatory responses in macrophages. Transcriptional profiling using RNA sequencing revealed that TMP195 downregulates key inflammatory pathways consistent with inhibitory effects on IKKß. TMP195 mitigates the progression of established lesions and inhibits the infiltration of inflammatory cells. Moreover, TMP195 diminishes features of plaque vulnerability and thereby enhances plaque stability in advanced lesions. Ex vivo treatment of monocytes from patients with established atherosclerosis reduced the production of inflammatory cytokines including IL (interleukin)-1ß and IL-6. CONCLUSIONS: Our findings identify HDAC9 as a regulator of atherosclerotic plaque stability and IKK activation thus providing a mechanistic explanation for the prominence of HDAC9 as a vascular risk locus in genome-wide association studies. Its therapeutic inhibition may provide a potent lever to alleviate vascular inflammation. Graphical Abstract: A graphical abstract is available for this article.


Subject(s)
Arteries/enzymology , Atherosclerosis/enzymology , Histone Deacetylases/metabolism , I-kappa B Kinase/metabolism , Plaque, Atherosclerotic , Repressor Proteins/metabolism , Acetylation , Aged , Aged, 80 and over , Animals , Arteries/drug effects , Arteries/pathology , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Atherosclerosis/pathology , CX3C Chemokine Receptor 1/genetics , CX3C Chemokine Receptor 1/metabolism , Cytokines/metabolism , Disease Models, Animal , Endothelial Cells/enzymology , Endothelial Cells/pathology , Enzyme Activation , Female , Fibrosis , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/genetics , Humans , I-kappa B Kinase/genetics , Inflammation Mediators/metabolism , Leukocyte Rolling , Macrophages/enzymology , Macrophages/pathology , Male , Mice, Knockout, ApoE , Middle Aged , Monocytes/enzymology , Monocytes/pathology , Protein Binding , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/genetics , Signal Transduction
2.
Stroke ; 50(10): 2651-2660, 2019 10.
Article in English | MEDLINE | ID: mdl-31500558

ABSTRACT

Background and Purpose- Genome-wide association studies have identified the HDAC9 (histone deacetylase 9) gene region as a major risk locus for atherosclerotic stroke and coronary artery disease in humans. Previous results suggest a role of altered HDAC9 expression levels as the underlying disease mechanism. rs2107595, the lead single nucleotide polymorphism for stroke and coronary artery disease resides in noncoding DNA and colocalizes with histone modification marks suggestive of enhancer elements. Methods- To determine the mechanisms by which genetic variation at rs2107595 regulates HDAC9 expression and thus vascular risk we employed targeted resequencing, proteome-wide search for allele-specific nuclear binding partners, chromatin immunoprecipitation, genome-editing, reporter assays, circularized chromosome conformation capture, and gain- and loss-of-function experiments in cultured human cell lines and primary immune cells. Results- Targeted resequencing of the HDAC9 locus in patients with atherosclerotic stroke and controls supported candidacy of rs2107595 as the causative single nucleotide polymorphism. A proteomic search for nuclear binding partners revealed preferential binding of the E2F3/TFDP1/Rb1 complex (E2F transcription factor 3/transcription factor Dp-1/Retinoblastoma 1) to the rs2107595 common allele, consistent with the disruption of an E2F3 consensus site by the risk allele. Gain- and loss-of-function studies showed a regulatory effect of E2F/Rb proteins on HDAC9 expression. Compared with the common allele, the rs2107595 risk allele exhibited higher transcriptional capacity in luciferase assays and was associated with higher HDAC9 mRNA levels in primary macrophages and genome-edited Jurkat cells. Circularized chromosome conformation capture revealed a genomic interaction of the rs2107595 region with the HDAC9 promoter, which was stronger for the common allele as was the in vivo interaction with E2F3 and Rb1 determined by chromatin immunoprecipitation. Gain-of-function experiments in isogenic Jurkat cells demonstrated a key role of E2F3 in mediating rs2107595-dependent transcriptional regulation of HDAC9. Conclusions- Collectively, our findings imply allele-specific transcriptional regulation of HDAC9 via E2F3 and Rb1 as a major mechanism mediating vascular risk at rs2107595.


Subject(s)
Atherosclerosis/genetics , E2F3 Transcription Factor/genetics , Gene Expression Regulation/genetics , Histone Deacetylases/genetics , Repressor Proteins/genetics , Retinoblastoma Binding Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Cells, Cultured , Genetic Predisposition to Disease/genetics , Humans , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...