Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Syst Appl Microbiol ; 44(1): 126166, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33310406

ABSTRACT

The genus Pseudooceanicola from the alphaproteobacterial Roseobacter group currently includes ten validated species. We herein describe strain Lw-13eT, the first Pseudooceanicola species from marine macroalgae, isolated from the brown alga Fucus spiralis abundant at European and North American coasts. Physiological and pangenome analyses of Lw-13eT showed corresponding adaptive features. Adaptations to the tidal environment include a broad salinity tolerance, degradation of macroalgae-derived substrates (mannitol, mannose, proline), and resistance to several antibiotics and heavy metals. Notably, Lw-13eT can degrade oligomeric alginate via PL15 alginate lyase encoded in a polysaccharide utilization locus (PUL), rarely described for roseobacters to date. Plasmid localization of the PUL strengthens the importance of mobile genetic elements for evolutionary adaptations within the Roseobacter group. PL15 homologs were primarily detected in marine plant-associated metagenomes from coastal environments but not in the open ocean, corroborating its adaptive role in algae-rich habitats. Exceptional is the tolerance of Lw-13eT against the broad-spectrum antibiotic tropodithietic acid, produced by Phaeobacter spp. co-occurring in coastal habitats. Furthermore, Lw-13eT exhibits features resembling terrestrial plant-bacteria associations, i.e. biosynthesis of siderophores, terpenes and volatiles, which may contribute to mutual bacteria-algae interactions. Closest described relative of Lw-13eT is Pseudopuniceibacterium sediminis CY03T with 98.4% 16S rRNA gene sequence similarity. However, protein sequence-based core genome phylogeny and average nucleotide identity indicate affiliation of Lw-13eT with the genus Pseudooceanicola. Based on phylogenetic, physiological and (chemo)taxonomic distinctions, we propose strain Lw-13eT (=DSM 29013T=LMG 30557T) as a novel species with the name Pseudooceanicola algae.


Subject(s)
Fucus/microbiology , Phylogeny , Rhodobacteraceae/classification , Adaptation, Physiological , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Germany , RNA, Ribosomal, 16S/genetics , Rhodobacteraceae/isolation & purification , Seawater , Seaweed/microbiology , Sequence Analysis, DNA
2.
Beilstein J Org Chem ; 14: 2964-2973, 2018.
Article in English | MEDLINE | ID: mdl-30591820

ABSTRACT

Bacteria of the Roseobacter group (Rhodobacteraceae) are important members of many marine ecosystems. Similar to other Gram-negative bacteria many roseobacters produce N-acylhomoserine lactones (AHLs) for communication by quorum sensing systems. AHLs regulate different traits like cell differentiation or antibiotic production. Related N-acylalanine methyl esters (NAMEs) have been reported as well, but so far only from Roseovarius tolerans EL-164. While screening various roseobacters isolated from macroalgae we encountered four strains, Roseovarius sp. D12_1.68, Loktanella sp. F13, F14 and D3 that produced new derivatives and analogs of NAMEs, namely N-acyl-2-aminobutyric acid methyl esters (NABME), N-acylglycine methyl esters (NAGME), N-acylvaline methyl esters (NAVME), as well as for the first time a methyl-branched NAME, N-(13-methyltetradecanoyl)alanine methyl ester. These compounds were detected by GC-MS analysis, and structural proposals were derived from the mass spectra and by derivatization. Verification of compound structures was performed by synthesis. NABMEs, NAVMEs and NAGMEs are produced in low amounts only, making mass spectrometry the method of choice for their detection. The analysis of both EI and ESI mass spectra revealed fragmentation patterns helpful for the detection of similar compounds derived from other amino acids. Some of these compounds showed antimicrobial activity. The structural similarity of N-acylated amino acid methyl esters and similar lipophilicity to AHLs might indicate a yet unknown function as signalling compounds in the ecology of these bacteria, although their singular occurrence is in strong contrast to the common occurrence of AHLs. Obviously the structural motif is not restricted to Roseovarius spp. and occurs also in other genera.

3.
Beilstein J Org Chem ; 14: 1309-1316, 2018.
Article in English | MEDLINE | ID: mdl-29977398

ABSTRACT

N-Acylhomoserine lactones (AHLs) are important bacterial messengers, mediating different bacterial traits by quorum sensing in a cell-density dependent manner. AHLs are also produced by many bacteria of the marine Roseobacter group, which constitutes a large group within the marine microbiome. Often, specific mixtures of AHLs differing in chain length and oxidation status are produced by bacteria, but how the biosynthetic enzymes, LuxI homologs, are selecting the correct acyl precursors is largely unknown. We have analyzed the AHL production in Dinoroseobacter shibae and three Phaeobacter inhibens strains, revealing strain-specific mixtures. Although large differences were present between the species, the fatty acid profiles, the pool for the acyl precursors for AHL biosynthesis, were very similar. To test the acyl-chain selectivity, the three enzymes LuxI1 and LuxI2 from D. shibae DFL-12 as well as PgaI2 from P. inhibens DSM 17395 were heterologously expressed in E. coli and the enzymes isolated for in vitro incubation experiments. The enzymes readily accepted shortened acyl coenzyme A analogs, N-pantothenoylcysteamine thioesters of fatty acids (PCEs). Fifteen PCEs were synthesized, varying in chain length from C4 to C20, the degree of unsaturation and also including unusual acid esters, e.g., 2E,11Z-C18:2-PCE. The latter served as a precursor of the major AHL of D. shibae DFL-12 LuxI1, 2E,11Z-C18:2-homoserine lactone (HSL). Incubation experiments revealed that PgaI2 accepts all substrates except C4 and C20-PCE. Competition experiments demonstrated a preference of this enzyme for C10 and C12 PCEs. In contrast, the LuxI enzymes of D. shibae are more selective. While 2E,11Z-C18:2-PCE is preferentially accepted by LuxI1, all other PCEs were not, except for the shorter, saturated C10-C14-PCEs. The AHL synthase LuxI2 accepted only C14 PCE and 3-hydroxydecanoyl-PCE. In summary, chain-length selectivity in AHLs can vary between different AHL enzymes. Both, a broad substrate acceptance and tuned specificity occur in the investigated enzymes.

4.
Mar Drugs ; 17(1)2018 Dec 31.
Article in English | MEDLINE | ID: mdl-30602652

ABSTRACT

N-acylhomoserine lactones (AHLs), bacterial signaling compounds involved in quorum-sensing, are a structurally diverse group of compounds. We describe here the identification, synthesis, occurrence and biological activity of a new AHL, N-((2E,5Z)-2,5-dodecadienoyl)homoserine lactone (11) and its isomer N-((3E,5Z)-3,5-dodecadienoyl)homoserine lactone (13), occurring in several Roseobacter group bacteria (Rhodobacteraceae). The analysis of 26 strains revealed the presence of 11 and 13 in six of them originating from the surface of the macroalgae Fucus spiralis or sediments from the North Sea. In addition, 18 other AHLs were detected in 12 strains. Compound identification was performed by GC/MS. Mass spectral analysis revealed a diunsaturated C12 homoserine lactone as structural element of the new AHL. Synthesis of three likely candidate compounds, 11, 13 and N-((2E,4E)-2,4-dodecadienoyl)homoserine lactone (5), revealed the former to be the natural AHLs. Bioactivity test with quorum-sensing reporter strains showed high activity of all three compounds. Therefore, the configuration and stereochemistry of the double bonds in the acyl chain seemed to be unimportant for the activity, although the chains have largely different shapes, solely the chain length determining activity. In combination with previous results with other Roseobacter group bacteria, we could show that there is wide variance between AHL composition within the strains. Furthermore, no association of certain AHLs with different habitats like macroalgal surfaces or sediment could be detected.


Subject(s)
Acyl-Butyrolactones/chemistry , Acyl-Butyrolactones/metabolism , Roseobacter/chemistry , Roseobacter/metabolism , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/chemistry , 4-Butyrolactone/metabolism , Gas Chromatography-Mass Spectrometry/methods , Quorum Sensing/physiology , Rhodobacteraceae/chemistry , Rhodobacteraceae/metabolism
5.
J Nat Prod ; 80(12): 3289-3295, 2017 12 22.
Article in English | MEDLINE | ID: mdl-29192774

ABSTRACT

Bacteria can produce a wide variety of volatile compounds. Many of these volatiles carry oxygen, while nitrogen-containing volatiles are less frequently observed. We report here on the identification and synthesis of new nitrogen-containing volatiles from Salinispora pacifica CNS863 and explore the occurrence in another bacterial lineage, exemplified by Roseobacter-group bacteria. Several compound classes not reported before from bacteria were identified, such as dialkyl ureas and oxalamides. Sulfinamides have not been reported before as natural products. The actinomycete S. pacifica CNS863 produces, for example, sulfinamides N-isobutyl- and N-isopentylmethanesulfinamide (5, 6), urea N,N'-diisobutylurea (16), and oxalamide N,N'-diisobutyloxalamide (17). In addition, new imines such as (E)-1-(furan-2-yl)-N-(2-methylbutyl)methanimine (8) and (E)-2-((isobutylimino)methyl)phenol (13) were identified together with several other imines, acetamides, and formamides. Some of these compounds including the sulfinamides were also released by the Roseobacter-group bacteria Roseovarius pelophilus G5II, Pseudoruegeria sp. SK021, and Phaeobacter gallaeciensis BS107, although generally fewer compounds were detected. These nitrogen-containing volatiles seem to originate from biogenic amines derived from the amino acids valine, leucine, and isoleucine.


Subject(s)
Aquatic Organisms/metabolism , Micromonosporaceae/metabolism , Nitrogen/metabolism , Roseobacter/metabolism
6.
Chembiochem ; 16(14): 2094-107, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26212108

ABSTRACT

Twenty-four strains of marine Roseobacter clade bacteria were isolated from macroalgae and investigated for the production of quorum-sensing autoinducers, N-acylhomoserine lactones (AHLs). GC/MS analysis of the extracellular metabolites allowed us to evaluate the release of other small molecules as well. Nineteen strains produced AHLs, ranging from 3-OH-C10:0-HSL (homoserine lactone) to (2E,11Z)-C18:2-HSL, but no specific phylogenetic or ecological pattern of individual AHL occurrence was observed when cluster analysis was performed. Other identified compounds included indole, tropone, methyl esters of oligomers of 3-hydroxybutyric acid, and various amides, such as N-9-hexadecenoylalanine methyl ester (9-C16:1-NAME), a structural analogue of AHLs. Several compounds were tested for their antibacterial and antialgal activity on marine isolates likely to occur in the habitat of the macroalgae. Both AHLs and 9-C16:1-NAME showed high antialgal activity against Skeletonema costatum, whereas their antibacterial activity was low.


Subject(s)
4-Butyrolactone/analogs & derivatives , Hydroxybutyrates/metabolism , Quorum Sensing , Roseobacter/isolation & purification , Roseobacter/physiology , Seaweed/microbiology , 4-Butyrolactone/analysis , 4-Butyrolactone/metabolism , Hydroxybutyrates/analysis , Methylation , Roseobacter/chemistry
7.
BMC Genomics ; 15: 130, 2014 Feb 13.
Article in English | MEDLINE | ID: mdl-24524855

ABSTRACT

BACKGROUND: Dinoroseobacter shibae, a member of the Roseobacter clade abundant in marine environments, maintains morphological heterogeneity throughout growth, with small cells dividing by binary fission and large cells dividing by budding from one or both cell poles. This morphological heterogeneity is lost if the quorum sensing (QS) system is silenced, concurrent with a decreased expression of the CtrA phosphorelay, a regulatory system conserved in Alphaproteobacteria and the master regulator of the Caulobacter crescentus cell cycle. It consists of the sensor histidine kinase CckA, the phosphotransferase ChpT and the transcriptional regulator CtrA. Here we tested if the QS induced differentiation of D. shibae is mediated by the CtrA phosphorelay. RESULTS: Mutants for ctrA, chpT and cckA showed almost homogeneous cell morphology and divided by binary fission. For ctrA and chpT, expression in trans on a plasmid caused the fraction of cells containing more than two chromosome equivalents to increase above wild-type level, indicating that gene copy number directly controls chromosome number. Transcriptome analysis revealed that CtrA is a master regulator for flagellar biosynthesis and has a great influence on the transition to stationary phase. Interestingly, the expression of the autoinducer synthase genes luxI2 and luxI3 was strongly reduced in all three mutants, resulting in loss of biosynthesis of acylated homoserine-lactones with C14 side-chain, but could be restored by expressing these genes in trans. Several phylogenetic clusters of Alphaproteobacteria revealed a CtrA binding site in the promoters of QS genes, including Roseobacters and Rhizobia. CONCLUSIONS: The CtrA phosphorelay induces differentiation of a marine Roseobacter strain that is strikingly different from that of C. crescentus. Instead of a tightly regulated cell cycle and a switch between two morphotypes, the morphology and cell division of Dinoroseobacter shibae are highly heterogeneous. We discovered for the first time that the CtrA phosphorelay controls the biosynthesis of signaling molecules. Thus cell-cell communication and differentiation are interlinked in this organism. This may be a common strategy, since we found a similar genetic set-up in other species in the ecologically relevant group of Alphaproteobacteria. D. shibae will be a valuable model organism to study bacterial differentiation into pleomorphic cells.


Subject(s)
Bacterial Proteins/genetics , Rhodobacteraceae/genetics , Acyl-Butyrolactones/metabolism , Bacterial Proteins/metabolism , Binding Sites , Evolution, Molecular , Multigene Family , Phenotype , Promoter Regions, Genetic , Quorum Sensing/genetics , Rhodobacteraceae/growth & development , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...