Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Diabetes Care ; 45(8): 1911-1913, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35657082

ABSTRACT

OBJECTIVE: To investigate whether changes in circulating levels of pancreatic islet-related miRNA-375 (miR-375) are related to improved visceral and intrahepatic fat accumulation. RESEARCH DESIGN AND METHODS: This study included adults with abdominal obesity from an 18-month weight loss lifestyle intervention trial. Circulating miR-375-3p was measured at baseline and 18 months. MRI was performed (n = 139) to assess 18-month changes in abdominal and intrahepatic fat depots. RESULTS: Circulating miR-375-3p was related to fasting insulin and insulin resistance in participants with prediabetes. After the interventions, there was a significant increase of miR-375-3p (P < 0.001). Greater increase in miR-375-3p was associated with greater reductions of visceral (P = 0.024) and deep subcutaneous (P < 0.001) adipose tissues and intrahepatic fat content (P = 0.012). CONCLUSIONS: Increases in circulating miR-375-3p were associated with visceral and intrahepatic fat reduction. Changes in circulating pancreatic islet-related miR-375-3p may be linked to improved diabetogenic fat depots during weight loss lifestyle interventions.


Subject(s)
Adipose Tissue , MicroRNAs , Adult , Humans , Intra-Abdominal Fat , Life Style , MicroRNAs/genetics , Obesity , Weight Loss/genetics
2.
Am J Clin Nutr ; 116(1): 165-172, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35348584

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) are short noncoding RNAs and important posttranscriptional regulators of gene expression. Adipose tissue is a major source of circulating miRNAs; adipose-related circulating miRNAs may regulate body fat distribution and glucose metabolism. OBJECTIVES: We investigated how changes in adipose-related circulating microRNAs-99/100 (miR-99/100) in response to lifestyle interventions were associated with improved body fat distribution and reductions of diabetogenic ectopic fat depots among adults with abdominal obesity. METHODS: This study included adults with abdominal obesity from an 18-mo diet and physical activity intervention trial. Circulating miR-99a-5p, miR-99b-5p, and miR-100-5p were measured at baseline and 18 mo; changes in these miRNAs in response to the interventions were evaluated. The primary outcomes were changes in abdominal adipose tissue [visceral (VAT), deep subcutaneous (DSAT), and superficial subcutaneous (SSAT) adipose tissue; cm2] (n = 144). The secondary outcomes were changes in ectopic fat accumulation in the liver (n = 141) and pancreas (n = 143). RESULTS: Greater decreases in miR-100-5p were associated with more reductions of VAT (ß ± SE per 1-SD decrease: -9.63 ± 3.13 cm2; P = 0.0025), DSAT (ß ± SE: -5.48 ± 2.36 cm2; P = 0.0218), SSAT (ß ± SE: -4.64 ± 1.68 cm2; P = 0.0067), and intrahepatic fat percentage (ß ± SE: -1.54% ± 0.49%; P = 0.0023) after the interventions. Similarly, participants with greater decrease in miR-99a-5p had larger 18-mo reductions of VAT (ß ± SE: -10.12 ± 3.31 cm2 per 1-SD decrease; P = 0.0027) and intrahepatic fat percentage (ß ± SE: -1.28% ± 0.52%; P = 0.015). Further, decreases in circulating miR-99b-5p (ß ± SE: per 1-SD decrease: -0.44% ± 0.21%; P = 0.038) and miR-100-5p (ß ± SE: -0.50% ± 0.23%; P = 0.033) were associated with a decrease in pancreatic fat percentage, as well as improved glucose metabolism and insulin secretion at 18 mo. CONCLUSIONS: Decreases in circulating miR-99-5p/100-5p expression induced by lifestyle interventions were related to improved body fat distribution and ectopic fat accumulation. Our study suggests that changes in circulating adipose-related miR-99-5p/100-5p may be linked to reducing diabetogenic fat depots in patients with abdominal obesity.This trial was registered at clinicaltrials.gov as NCT01530724.


Subject(s)
Circulating MicroRNA , MicroRNAs , Adipose Tissue/metabolism , Adult , Circulating MicroRNA/genetics , Circulating MicroRNA/metabolism , Glucose/metabolism , Humans , Intra-Abdominal Fat/metabolism , Life Style , MicroRNAs/genetics , MicroRNAs/metabolism , Obesity/complications , Obesity/genetics , Obesity/therapy , Obesity, Abdominal/complications , Obesity, Abdominal/genetics , Obesity, Abdominal/therapy
3.
J Clin Endocrinol Metab ; 107(5): e1899-e1906, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35037057

ABSTRACT

PURPOSE: Little is known about the relations between changes in circulating microRNA-122 (miR-122) and liver fat in response to weight-loss interventions. We aimed to investigate the association between miR-122 and changes of hepatic fat content during 18-month diet and physical activity interventions. METHODS: The CENTRAL trial is an 18-month randomized, controlled trial among adults with abdominal obesity or dyslipidemia. Subjects were randomly assigned to a low-fat diet or a Mediterranean/low-carbohydrate diet. After 6 months of dietary intervention, each diet group was further randomized into added physical activity groups or no added physical activity groups for the following 12 months of intervention. The current study included 220 participants at baseline and 134 participants with repeated measurements on serum miR-122 and hepatic fat content over 18 months. RESULTS: Serum miR-122 significantly increased from baseline to 18 months, while no difference was observed across the 4 intervention groups. We found a significant association between miR-122 and hepatic fat content at baseline, as per unit increment in log-transformed miR-122 was associated with 3.79 higher hepatic fat content (P < 0.001). Furthermore, we found that higher elevations in miR-122 were associated with less reductions in hepatic fat percentage during 18-month interventions (ß = 1.56, P = 0.002). We also found a significant interaction between changes in miR-122 and baseline fasting plasma glucose with hepatic fat content changes in 18 months (P interaction = 0.02). CONCLUSIONS: Our data indicate that participants with higher elevation in serum miR-122 may benefit less in reduction of hepatic fat content in response to diet and physical activity interventions.


Subject(s)
Fatty Liver , MicroRNAs , Adult , Diet, Carbohydrate-Restricted , Diet, Fat-Restricted , Humans , Weight Loss/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...